INSIGHTS | September 1, 2016

Five Attributes of an Effective Corporate Red Team

After talking recently with colleagues at IOActive as well as some heads of industry-leading red teams, we wanted to share a list of attributes that we believe are key to any effective Red Team.

[ NOTE: For debate about the relevant terminology, we suggest Daniel’s post titled The Difference Between Red, Blue, and Purple Teams. ]

To be clear, we think there can be significant variance in how Red Teams are built and managed, and we believe there are likely multiple routes to success. But we believe there are a few key attributes that all (or at least most) corporate Red Teams should have as part of their program. These are:

  1. Organizational Independence
  2. Defensive Coordination
  3. Continuous Operation
  4. Adversary Emulation
  5. Efficacy Measurement

Let’s look at each of these.

Organizational Independence is the requirement that the Red Team be able to effectively act as a real-world attacker in terms of scope, tools, and techniques employed. Many organizations restrict their Red Teams to such a degree that they’re basically impotent, which in turn lulls the company into a false sense of security.

Defensive Coordination is the requirement that Red Teams regularly interact with their counterparts on the defensive side to ensure the organization is learning from their activities. If a Red Team is effective on its own, but doesn’t share its knowledge and successes with the defense in order make it stronger, then the Red Team has lost sight of its purpose.

Continuous Operation is the requirement that the organization remain under constant, rolling attack by the Red Team, which is the polar opposite of short, penetration-test style engagements. Red Teams should operate through campaigns that span weeks or months in duration, and both the defensive teams and the general user population should know that at any moment, of any day, they could be targeted by both a Red Team campaign of some sort, or by a real attacker.

Adversary Emulation is the requirement that Red Team campaigns should be regularly updated based on the actual tools, techniques, and processes employed by real-world attackers. If cyber-criminals are doing X this quarter, let’s emulate that. If we’re seeing some state actors doing Y this year, let’s emulate that. If you’re not simulating—to some significant degree—the techniques being used by actual attackers, the Red Team is providing questionable value.

Efficacy Measurement is the requirement that Red Teams know how effective they are at improving the security posture of the organization. If we can’t tell a clear story around how our defenses are improving, i.e., that it’s getting increasingly more difficult to compromise, move laterally, and achieve attacker goals, then you’re getting limited value from any work that’s being done.

Summary

Here’s a pointed capture of those points:

  • If your group is significantly restricted in its scope and capabilities by the organization, you probably don’t have an effective Red Team
  • If your group doesn’t regularly work hand-in-hand with the defensive side of the organization in order to improve the organization’s security posture, you probably don’t have an effective Red Team
  • If your internal or external service operates based on projects that happen once in a while rather than being staggered and continuous, you probably don’t have an effective Red Team
  • If you aren’t constantly updating your attack campaigns based on new intelligence on actual threat actors, you probably don’t have an effective Red Team
  • If you aren’t closely monitoring the effectiveness of the attack campaigns (and the responses to them by the defense) over time, you probably don’t have an effective Red Team

There are many other components of a solid Red Team that were not mentioned—top-end malware kits, elite security talent, deep understanding of the attacker mindset, etc.—but we think these five components are both most fundamental and most lacking.

As always, we would love to hear from other security types who might have a differing opinion. All of our positions are subject to change through exposure to compelling arguments and/or data.
RESEARCH | December 9, 2015

Maritime Security: Hacking into a Voyage Data Recorder (VDR)

In 2014, IOActive disclosed a series of attacks that affect multiple SATCOM devices, some of which are commonly deployed on vessels. Although there is no doubt that maritime assets are valuable targets, we cannot limit the attack surface to those communication devices that vessels, or even large cruise ships, are usually equipped with. In response to this situation, IOActive provides services to evaluate the security posture of the systems and devices that make up the modern integrated bridges and engine rooms found on cargo vessels and cruise ships. [1]

 

There are multiple facilities, devices, and systems located on ports and vessels and in the maritime domain in general, which are crucial to maintaining safe and secure operations across multiple sectors and nations.

 

Port security refers to protecting all of these assets from acts of piracy, terrorism, and other unlawful activities, such as smuggling. Recent activity appears to demonstrate that cyberattacks against this sector may have been underestimated. As threats evolve, procedures and policies must improve to take these new attack scenarios into account. For example,https://www.federalregister.gov/articles/2014/12/18/2014-29658/guidance-on-maritime-cybersecurity-standards

 

This blog post describes IOActive’s research related to one type of equipment usually present in vessels, Voyage Data Recorders (VDRs). In order to understand a little bit more about these devices, I’ll detail some of the internals and vulnerabilities found in one of these devices, the Furuno VR-3000.

 

What is a Voyage Data Recorder?

(http://www.imo.org/en/OurWork/Safety/Navigation/Pages/VDR.aspx ) A VDR is equivalent to an aircraft’s ‘BlackBox’. These devices record crucial data, such as radar images, position, speed, audio in the bridge, etc. This data can be used to understand the root cause of an accident.

 

Real Incidents

Several years ago, piracy acts were on the rise. Multiple cases were reported almost every day. As a result, nation-states along with fishing and shipping companies decided to protect their fleet, either by sending in the military or hiring private physical security companies.

On February 15, 2012, two Indian fishermen were shot by Italian marines onboard the Enrica merchant vessel, who supposedly opened fire thinking they were being attacked by pirates. This incident caused a serious diplomatic conflict between Italy and India, which continues to the present. https://en.wikipedia.org/wiki/Enrica_Lexie_case

 

‘Mysteriously’, the data collected from the sensors and voice recordings stored in the VDR during the hours of the incident was corrupted, making it totally unusable for authorities to use during their investigation.  As this story, from Indian Times, mentions the VDR could have provided authorities with crucial clues to figure out what really happened.

 

Curiously, Furuno was the manufacturer of the VDR that was corrupted in this incident. This Kerala High Court’s document covers this fact: http://indiankanoon.org/doc/187144571/ However, we cannot say whether the model Enrica Lexie was equipped with was the VR-3000. Just as a side note, the vessel was built in 2008 and the Furuno VR-3000 was apparently released in 2007.

 

Just a few weeks later, on March 1, 2012, the Singapore-flagged cargo ship MV. Prabhu Daya was involved in a hit-and-run incident off the Kerala Coast. As a result, three fishermen were killed and one more disappeared and was eventually rescued by a fishing vessel in the area. Indian authorities initiated an investigation of the accident that led to the arrest of the MV. Prabhu Daya’s captain.

During that process, an interesting detail was reported in several Indian newspapers.

http://www.thehindu.com/news/national/tamil-nadu/voyage-data-recorder-of-prabhu-daya-may-have-been-tampered-with/article2982183.ece

 

So, What’s Going on Here?

From a security perspective, it seems clear VDRs pose a really interesting target. If you either want to spy on a vessel’s activities or destroy sensitive data that may put your crew in a difficult position, VDRs are the key.

 

Understanding a VDR’s internals can provide authorities, or third-parties, with valuable information when performing forensics investigations. However, the ability to precisely alter data can also enable anti-forensics attacks, as described in the real incident previously mentioned.

 

As usual, I didn’t have access to the hardware; but fortunately, I played some tricks and found both firmware and software for the target VDR. The details presented below are exclusively based on static analysis and user-mode QEMU emulation (already explained in a previous blog post). [2]
 
Figure: Typical architecture of a VR-3000

 

Basically, inside the Data Collecting Unit (DCU) is a Linux machine with multiple communication interfaces, such as USB, IEEE1394, and LAN. Also inside the DCU, is a backup HDD that partially replicates the data stored on the Data Recording Unit (DRU). The DRU is protected against aggressions in order to survive in the case of an accident. It also contains a Flash disk to store data for a 12 hour period. This unit stores all essential navigation and status data such bridge conversations, VHF communications, and radar images.

 

The International Maritime Organization (IMO) recommends that all VDR and S-VDR systems installed on or after 1 July 2006 be supplied with an accessible means for extracting the stored data from the VDR or S-VDR to a laptop computer. Manufacturers are required to provide software for extracting data, instructions for extracting data, and cables for connecting between a recording device and computer.

 

The following documents provide more detailed information:
Furuno Vr3000 LivePlayer Version 4 Operator’s Manual for Version 2.xx.
After spending some hours reversing the different binaries, it was clear that security is not one of its main strengths of this equipment. Multiple services are prone to buffer overflows and command injection vulnerabilities. The mechanism to update firmware is flawed. Encryption is weak. Basically, almost the entire design should be considered insecure.
 

Take this function, extracted from from the Playback software, as an example of how not to perform authentication. For those who are wondering what ‘Encryptor’ is, just a word: Scytale.

 

Digging further into the binary services we can find a vulnerability that allows unauthenticated attackers with remote access to the VR-3000 to execute arbitrary commands with root privileges. This can be used to fully compromise the device. As a result, remote attackers are able to access, modify, or erase data stored on the VDR, including voice conversations, radar images, and navigation data.

VR-3000’s firmware can be updated with the help of Windows software known as ‘VDR Maintenance Viewer’ (client-side), which is proprietary Furuno software.

 

The VR-3000 firmware (server-side) contains a binary that implements part of the firmware update logic: ‘moduleserv’

 

This service listens on 10110/TCP.

 

Internally, both server (DCU) and client-side (VDR Maintenance Viewer, LivePlayer, etc.) use a proprietary session-oriented, binary protocol. Basically, each packet may contain a chain of ‘data units’, which, according to their type, will contain different kinds of data.

 

Figure: Some of the supported commands
‘moduleserv’ several control messages intended to control the firmware upgrade process. Let’s analyze how it handles a ‘SOFTWARE_BACKUP_START’ request:
An attacker-controlled string is used to build a command that will be executed without being properly sanitized. Therefore, this vulnerability allows remote unauthenticated attackers to execute arbitrary commands with root privileges.
Figure: ‘Moduleserv’ v2.54 packet processing
Figure: ‘Moduleserv’ v2.54 unsanitized system call

 

At this point, attackers could modify arbitrary data stored on the DCU in order to, for example, delete certain conversations from the bridge, delete radar images, or alter speed or position readings. Malicious actors could also use the VDR to spy on a vessel’s crew as VDRs are directly connected to microphones located, at a minimum, in the bridge.

 

However, compromising the DCU is not enough to cover an attacker’s tracks, as it only contains a backup HDD, which is not designed to survive extreme conditions. The key device in this anti-forensics scenario would be the DRU. The privileged position gained by compromising the DCU would allow attackers to modify/delete data in the DRU too, as this unit is directly connected through an IEEE1394 interface. The image below shows the structure of the DRU.
Figure: Internal structure of the DRU

Before IMO’s resolution MSC.233(90) [3], VDRs did not have to comply with security standards to prevent data tampering. Taking into account that we have demonstrated these devices can be successfully attacked, any data collected from them should be carefully evaluated and verified to detect signs of potential tampering.

 

IOActive, following our responsible disclosure policy, notified the CERT/CC about this vulnerability in October 2014. The CERT/CC, working alongside the JPCERT/CC, were in contact with Furuno and were able to reproduce and verify the vulnerability. Furuno committed to providing a patch for their customers “sometime in the year of 2015.” IOActive does not have further details on whether a patch has been made available.
 
References
————–

EDITORIAL | March 24, 2015

Lawsuit counterproductive for automotive industry

It came to my attention that there is a lawsuit attempting to seek damages against automakers revolving around their cars being hackable.

The lawsuit cites Dr. Charlie Miller’s and my work several times, along with several other researchers who have been involved in automotive security research.

I’d like to be the first to say that I think this lawsuit is unfortunate and subverts the spirit of our research. Charlie and I approached our work with the end goals of determining if technologically advanced cars could be controlled with CAN messages and informing the public of our findings. Obviously, we found this to be true and were surprised at how much could be manipulated with network messages. We learned so much about automobiles, their communications, and their associated physical actions.

Our intent was never to insinuate deliberate negligence on the part of the manufacturers. Instead, like most security researchers, we wanted to push the boundaries of what was thought to be possible and have fun doing it. While I do believe there is risk associated with vehicle connectivity, I think that a lawsuit can only be harmful as it has the potential to take funds away from what is really important:  securing the modern vehicle. I think any money automobile manufacturers must spend on legal fees would be more wisely spent on researching and developing automotive intrusion detection/prevention systems.

The automotive industry is not sitting idly by, but constantly working to improve the security of their past, present, and future vehicles. Security isn’t something that changes overnight, especially in the case of automobiles, which take even longer since there are both physical and software elements to be tested. Offensive security researchers will always be ahead of the people trying to formulate defenses, but that does not mean the defenders are not doing anything.

While our goals were public awareness and industry change, we did not want change to stem from the possible exploitation of public fears. Our hope was that by showing what is possible, we could work with the people who make the products we use and love on an everyday basis to improve vehicle security.

– cv

EDITORIAL | January 27, 2015

Life in the Fast Lane

Hi Internet Friends,
Chris Valasek here. You may remember me from educational films such as “Two Minus Three Equals Negative Fun”. If you have not heard, IOActive officially launched our Vehicle Security Service offering.
I’ve received several questions about the service and plan to answer them and many more during a webinar I am hosting on February 5, 2015 at 11 AM EST.
Some of the main talking points include: 
  • Why dedicate an entire service offering to vehicles and transportation?
  • A brief history of vehicle security research and why it has been relatively scarce
  • Why we believe that protecting vehicles and their supporting systems is of the utmost importance
  • IOActive’s goals for our Vehicle Security Service offering

Additionally, I’ll make sure to save sufficient time for Q&A to field your questions. I’d love to get as many questions as possible, so don’t be shy.

I look forward to your participation in the webinar on February 5,2015 11 AM EST. 

– cv
RESEARCH | September 18, 2014

A Dirty Distillation of Proposed V2V Readiness

Good Afternoon Internet
Chris Valasek here. You may remember me from such automated information kiosks as “Welcome to Springfield Airport”, and “Where’s Nordstrom?” Ever since Dr. Charlie Miller and I began our car hacking adventures, we’ve been asked about the upcoming Vehicle-to-Vehicle (V2V) initiative and haven’t had much to say because we only knew about the technology in the abstract. 
I finally decided to read the proposed documentation from the National Highway Traffic Safety Administration (NHTSA) titled: “Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Application” (https://ioactive.com/wp-content/uploads/2014/09/Readiness-of-V2V-Technology-for-Application-812014.pdf). This is my distillation of a very small portion of the 327-page document. 

While there are countless pages of information regarding cost, crash statistics, consumer acceptance, policy, legal liability, and fuel economy, as a breaker of things, I was most interested in any technical information I could extract. In this blog post, I list some interesting bits I stumbled upon when reading the document. I skipped over huge portions I felt weren’t applicable to my investigation. Mainly anything that didn’t have to do with a purely technical implementation. In addition, any diagrams or pictures in this blog post were taken directly from “Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Application”. 
 
A Very Brief History
 
Although currently a hot topic in the automotive world, the planning, design, and testing of the V2V infrastructure started over 11 years ago. It has gone from special purpose lanes in San Diego to a wireless infrastructure designed to be transparent to the end user. For those not in the know, a pilot program was deployed in Ann Arbor, MI from August 2012 to February 2014. This isn’t a harebrained scheme to a long-standing problem, but has been thought about and fine-tuned for quite some time. 
 
Overview
 
The V2V system is designed (obviously) to reduce death, injuries, and economic loss from motor vehicle crashes. Many people, including me, didn’t realize this initial proposal is only designed to provide visual and audible warnings to the driver and DOES NOT include or plan for physical alterations of the automobile based on V2V communications. For example, the V2V system will not brake a car in the event of an impending accident, but only warn the driver to apply the brake (although V2V could be used by current in-car systems, such as Collision Avoidance, to augment their functionality). 
 
The main components: 
 
Forward Collision Warning (FCW) – Warns you if you’re about to smash into something in front of you.
 
Emergency Electronic Brake Lights – Warns you when the person in front of you is slowing down while you’re reading your Twitter feed. 
 
Do Not Pass Warning – Really for unintentional drift more than you trying to push the limit to pass that big rig on the left side of the dotted line.
 
Left Turn Assist (LTA) — Warns you if there is a car coming when making a left turn. 
 
Intersection Movement Assist (IMA) – Figuring out how not to smash into several different cars at a 4-way intersection is hard, let’s go shopping!
 
Blind Spot Warning + Lane Change Warning – Warns you if you’re about to smash into something while changing lanes. No more “Rubbin is racin” I guess. 
This picture gives you a better idea of some of the scenarios mentioned above. 
 
 
You’ll notice that none of the safety mechanisms mentioned earlier involve performing any physical actions on the automobile. The designers of the V2V system realize that false positives could be a huge problem with warnings. Just imagine how scared people would be if their automobile braked or steered without cause in an attempt to protect them. 
 
Notable Items: 
  • The document predicts it will take 37 years for V2V to penetrate an entire fleet.
  • Rear and Forward Collision Warnings appear to be capable of saving the most money.
  • NHSTA does not expect an immediate difference, due to lack of adoption, but hopes to gain ground as time goes on.
 
My Thoughts
 
All these features seem like they will greatly increase vehicle and passenger safety. My one concern is a whole V2V infrastructure is being developed without much thought given to the physical control of a vehicle. It seems like the next logical step is to not only warn drivers if they are about to collide, but to prevent it. Maybe this will always be left up to the manufacturer, maybe not. 
 
Components/Terms
 
On Board Equipment (OBE) – The device in your car that will communicate with the V2V infrastructure. It will either be OEM (put there by the manufacturer) or aftermarket (sold separately from the car, mobile phone, standalone device, and so on). 
 
Road Side Equipment (RSE) – These devices will connect to the vehicles around them. They can be on road curves that warn the car about its speed, traffic lights, stop signs, and so on. 
 
Dedicated Short-range Communications (DSRC) – The short-range wireless communications that RSE and OBE use to communicate.
 
Driver Vehicle Interface (DVI) – This interface will display the V2V warnings.
Basic Safety Message (BSM) – This is a message sent to and received from other OBE and RSE devices to make the V2V system work. For example, it could announce the current speed of the vehicle.
 
Security Credentials Management System (SCMS) – The systems that manage all of the credentials for V2V systems, such as the certificates used to authenticate BSMs. 
 
 
Communications
 
The most interesting portion of the document for me was the technical information about the underlying communications system. I think many people want to understand what kind of wireless communications will be implemented for the vehicles and devices with which they will interact. 
 
The V2V infrastructure will operate on the 5.8 – 5.9 GHz band (5850 – 5925 MHz) using seven (7) non-overlapping 10 MHz channels, with a 5 MHz guard band at the beginning of each frequency range. Channel 172 will be used to send public safety information. 
 
Since these devices, much like your AM/FM radio, can only be on one channel at a time, switching is necessary. Switching between the Control Channel (CCH) and Service Channel (SCH) occurs every 50 ms to transmit or receive DSRC messages emitted by other vehicles or RSE. There is a 4 ms front guard leaving only 46 percent of “potentially” available bandwidth for BSM transmissions. 
 
DSRC messages will be broadcast (omnidirectional for up to 300 meters) on a standardized network (IEEE 1609.4) over a standardized wireless layer IEEE 802.11p. The chart below shows all of the system standards currently anticipated for the first generation V2V system.
 
 
 
 
 
 
 
 
 
 
 
 
BSM messages also have a certain format, which is partially listed below. Please see the original document for more detailed information. Each message should have a packet size of 200 – 500 bytes with a maximum required range of 50 – 300 meters. 
 

Note: This is a partial snippet of the BSM Part II contents.
 
One main take away was that BSM messages are NOT encrypted; therefore, they could be viewed over the air by interested parties. The messages are, however, authenticated via a signing mechanism (discussed in the next section). 
 
Notable Items:
 
NHSTA is unsure if current WiFi infrastructure will interfere with the communications based on the devices. The claim is that more research is required. 
 
NHSTA claims the system will NOT collect or store any data identifying individuals or individual vehicles, nor will it create the ability for the government to do so.
 
NHSTA claims it would be extremely difficult for third parties to use the system to track a vehicle.
 
“NHTSA is aware of concerns that the V2V system could broadcast or store BSM data (such as GPS or path history) that, if captured by a third party, might facilitate very-localized vehicle tracking. In fact, the broadcast of unencrypted GPS, path history, and other data characteristics in or derived from the BSM appears to introduce only very limited potential risks to individual privacy.”
“It is theoretically possible that a third party could try to capture the transitory locational data in order to track a specific vehicle. However, we do not see a scenario in which one wishing to track a vehicle would choose the V2V system as the means.”
 
“To date, NHTSA’s V2V research has not included research specific to this issue, as researchers assumed that the possibility of cyber-attacks on motor vehicles was an existing vector of risk – not a new one created by V2V technologies.”
 
My Thoughts:
 
This is an amazingly complex system that is going to send, receive, and analyze data in real-time.
 
It will be interesting to see if people figure out how to use BSM messages to track vehicles or enumerate personal information due to their lack of encryption.
It looks like you could use BSM messages to gather information and track a vehicle, but I’m unsure of the practicality of doing so.
 
I don’t really know enough about radio/wireless to comment much more, but I’d love to hear other people’s thoughts. 
 
Security
 
The V2V system, while sending a majority of the information in cleartext, does have mechanisms that are designed for security. After much internal debate, it was decided that a Public Key Infrastructure (PKI) would be implemented to prove authenticity when sending and receiving messages. I think we’re all familiar with the PKI system, since we use it every day on the Internet to do our banking, chatting, and general internetting. Because this is a blog post, I only sampled a small set of the information available in the document. Also, I’m far from a crypto expert and will do my best to briefly explain the system that is being implemented. Please excuse or correct any errors you see with a quick tweet to @nudehaberdasher.
 
As stated before, BSMs are NOT encrypted, but verified with a digital signature, meaning that each message must be signed before it is sent and checked upon receipt. This trust system is a requirement, since thousands of messages will be authenticated in real-time when driving a vehicle that uses the V2V system. 
 
Like our Internet PKI system, there is a Certificate Authority (CA) but, to quote the paper: 
“We note that the interactions between the components shown in Figure <not-shown> are all based on machine-to-machine performance. No human judgment is involved in creation, granting, or revocation of the digital certificates.”
 
This means that there will not be human involvement when putting new devices on the V2V system. 
 
A simplified version of the system can be seen below.
 
 
Obviously, the system is much more complex, involving preinstalled certificates, which are supposed to last five minutes each, a signing authority, and even a misbehavior authority responsible for revoking certificates for a variety of reasons. A comparison between the V2V PKI system and the PKI system we currently use on the Internet is illustrated below. 
 
“Initial deployment is assumed to last for three years, and requires that OBEs on newly manufactured vehicles download a three-year batch of certificates. These batches would include reusable, overlapping five-minute certificates valid for one week. The term “overlapping” in this context refers to the fact that any certificate can be used at any time during the validity period. The batches would be good for one week and at this point are assumed to be around 20 certificates per week, which equates to 1,040 for one year of certificates. As the frequency of the certificate download batch changes for full deployment, the number and therefore size of the certificate batches also changes accordingly.”
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It looks as if there are two options for preinstalled certificates, which will be placed there by OEMs and aftermarket solution providers:
 
Option 1: Three-year reusable, non-overlapping five-minute certificates
 
Option 2: Three-year batches of reusable, overlapping, 260 five-minute certificates valid for one week
 
Certificates will be managed by the SCMS and communications with devices will go as follows: 
  • UPLOAD – a request for new certificates
  • DOWNLOAD – new certificates
  • UPLOAD – a misbehavior report
  • DOWNLOAD – a full/partial CRL
  • Conduct other data functions or system updates
Certificate renewal, updates, and revocation still seem to be up in the air. Certificate downloads could happen through cellular, WiFi, or DSRC. The most likely scenario will be DSRC due to cost and availability issues. New certificates could be updated in-full on a daily basis, or the system could use incremental updates to save time and bandwidth. 
 
While the design of the system seems to be pretty well developed, the details of the implementation and ownership still seem to be undecided. It looks like only time will tell who will own and administer this system and in what fashion it will be administered. 
 
Notable Items:
 
“As no decisions about ownership or operation have been made, we do not advocate for public or private ownership, but include the basic functions we expect the SCMS Manager would perform in our discussions and analyses.”
 
“Most SCMS functions listed above are fairly well developed. One critical function, which has not yet been fleshed out adequately for DOT to assess, is the Misbehavior Authority (MA) — the central function responsible for processing misbehavior reports generated by OBE and producing and publishing the CRL.”
 
“Global detection processes have not yet been defined.”
 
Research into the PKI system will continue into 2016. 
 
“Publication of the seed is sufficient to revoke all certificates belonging to the revoked device, but without the seed an eavesdropper cannot tell which certificates belong to a particular device. (Note: the revocation process is designed such that it does not give up backward privacy.)”
 
Internal Blacklist – This would be used by the SCMS to make sure that an OBE asking for new certificates is not on the revoked list. If a vehicle or device is on the list, no certificate updates will be issued.
 
My Thoughts:
 
Be it that devices with valid certificates and valid certificate updates will be the hands of an ‘attacker’, I’m interested to see how well the certificate revocation functionality works. 
 
Without any decision on certificate revocation, will it be implemented? If so, will it be done correctly and robustly? 
 
How fast can certificates be revoked? 
 
Sending spoofed, legitimately signed messages for even five minutes at a busy intersection could cause a massive disruption. 
 
Private keys are going to be in infrastructure devices, meaning there’s a good chance they won’t be ‘private’ for long. 
 
Crypto people do your crypto thing on this. 
 
Conclusion
 
I think the V2V technology is very interesting but still has many questions to answer, due to its massive technical complexity and huge economic cost. Additionally, I don’t think people have much to be worried about in the first iteration since there are only audible and visual warnings to the driver, without any direct effect on the vehicle. 
 
I hope that, when developing these systems, planning and design would be considered around vehicle control and not only warnings, as it seems like true V2V accident avoidance is the next logical step. Additionally, there is probably a good chance that current vehicle bus infrastructure is used to provide warnings to the driver, which means there is yet another remote entry point to the vehicle which potentially uses the vehicle’s network for communication. From an attacker’s perspective, all remote communication systems that interact with the car will be seen as attack surfaces. 
 
My last thought is that a true V2V infrastructure is further away than many people think. While we may have fringe devices in the coming years, full fleet adoption isn’t expected until 2037, so we can all go back to worrying about our robot overlords taking over in 2029. 
Chris Valasek @nudehaberdasher
 
Special Thanks: Charlie Miller (@0xcharlie) and Zach Lanier (@quine
RESEARCH | August 14, 2014

Remote survey paper (car hacking)

Good Afternoon Interwebs,
Chris Valasek here. You may remember me from such nature films as “Earwigs: Eww”.
Charlie and I are finally getting around to publicly releasing our remote survey paper. I thought this went without saying but, to reiterate, we did NOT physically look at the cars that we discussed. The survey was designed as a high level overview of the information that we acquired from the mechanic’s sites for each manufacturer. The ‘Hackability’ is based upon our previous experience with automobiles, attack surface, and network structure.
Enjoy!