RESOURCES

Thought leaders in information security, we conduct radical, world-changing research and deliver renowned presentations around the world.
Blogs | INSIGHTS | August 7, 2010

Parallax Propeller P8X32A Quick Teardown

Parallax has a really neat 8 core 32 bit CPU called the ‘Propeller’.  It’s been out for a few years but it is gaining popularity.  There is no security with the device as it boots insecurely via a UART or I2C EEPROM.  None the less, we thought it was interesting to see an 8 core CPU decapsulated! One can clearly see 8 columns that appear almost symmetric (except in the middle region).  The upper 8 squares are each ‘cogs’ 512 * 32 SRAMs as described in the…

Cesar Cerrudo
Blogs | INSIGHTS | January 24, 2008

ATMEGA88 Teardown

An 8k FLASH, 512 bytes EEPROM, 512 bytes SRAM CPU operating 1:1 with the external world unlike those Microchip PIC’s we love to write up about :). It’s a 350 nanometer (nm), 3 metal layer device fabricated in a CMOS process.  It’s beautiful to say the least;  We’ve torn it down and thought we’d blog about it! The process Atmel uses on their .35 micrometer (um) technology is awesome. Using a little HydroFluoric Acid (HF) and we partially removed the top metal layer (M3).  Everything is now clearly visible for our…

IOActive
Blogs | INSIGHTS | January 22, 2008

Security Mechanism of PIC16C558,620,621,622

Last month we talked about the structure of an AND-gate layed out in Silicon CMOS.  Now, we present to you how this AND gate has been used in Microchip PICs such as PIC16C558, PIC16C620, PIC16C621, PIC16C622, and a variety of others. If you wish to determine if this article relates to a particular PIC you may be in possession of, you can take an windowed OTP part (/JW) and set the lock-bits.  If after 10 minutes in UV, it still says it’s locked, this article applies to your…

IOActive
Blogs | INSIGHTS | November 15, 2007

The KEYLOK USB Dongle. Little. Green. And dead before it was born!

We decided to do a teardown on a Keylok USB based dongle from Microcomputer Applications, Inc. (MAI). Opening the dongle was no challenge at all. We used an x-acto knife to slit the sidewall of the rubber protective coating. This allowed us to remove the dongle’s circuit board from the surrounding protective coating. The top side of the printed circuit board (PCB) is shown above. MAI did not try to conceal anything internally. We were a little surprised by this :(. The backside consists of two tracks…

IOActive
Blogs | INSIGHTS | October 26, 2007

Decapsulated devices

Recently at Toorcon9 (www.toorcon.org), some individuals asked to see images of decapsulated parts still in their packages. I dug around and came up with some examples. Click on any of the pictures for a larger version.     Above: Dallas DS89C450     Above: Microchip dsPIC30F6013 Using our proprietary procedures, all parts remain 100% functional with no degradation after exposing the substrate.

IOActive

Arm IDA and Cross Check: Reversing the 787’s Core Network

IOActive has documented detailed attack paths and component vulnerabilities to describe the first plausible, detailed public attack paths to effectively reach the avionics network on a 787, commercial airplane from either non-critical domains, such as Passenger Information and Entertainment Services, or even external networks.

ACCESS THE WHITEPAPER


IOACTIVE CORPORATE OVERVIEW (PDF)