RESEARCH | April 6, 2021

Watch Your Step: Research Into the Concrete Effects of Fault Injection on Processor State via Single-Step Debugging

Fault injection, also known as glitching, is a technique where some form of interference or invalid state is intentionally introduced into a system in order to alter the behavior of that system. In the context of embedded hardware and electronics generally, there are a number of forms this interference might take. Common methods for fault injection in electronics include:

  • Clock glitching (errant clock edges are forced onto the input clock line of an IC)

  • Voltage fault injection (applying voltages higher or lower than the expected voltage to IC power lines)

  • Electromagnetic glitching (Introducing EM interference)

This article will focus on voltage fault injection, specifically, the introduction of momentary voltages outside of normal operating conditions on the target device’s power rails. These momentary pulses or drops in input voltage (glitches) can affect device operation and are directed with the intention of achieving a particular effect. Commonly desired effects include “corrupting” instructions or memory in the processor and skipping instructions.

RESEARCH | February 23, 2021

A Practical Approach to Attacking IoT Embedded Designs (II)

In this second and final blog post on this topic, we cover some OTA vulnerabilities we identified in wireless communication protocols, primarily Zigbee and BLE.

As in the previous post, the findings described herein are intended to illustrate the type of vulnerabilities a malicious actor could leverage to attack a specified target to achieve DoS, information leakage, or arbitrary code execution.

These vulnerabilities affect numerous devices within the IoT ecosystem. IOActive worked with the semiconductor vendors to coordinate the disclosure of these security flaws, but it is worth mentioning that due the specific nature of the IoT market and despite the fact that patches are available, a significant number of vulnerable devices will likely never be patched.

RESEARCH | February 11, 2021

A Practical Approach To Attacking IoT Embedded Designs (I)

The booming IoT ecosystem has meant massive growth in the embedded systems market due to the high demand for connected devices. Nowadays, designing embedded devices is perhaps easier than ever thanks to the solutions, kits, chips, and code that semiconductor manufacturers provide to help developers cope with the vast number of heterogeneous requirements IoT devices should comply with.

This never-ending race to come up with new features within tight deadlines comes at a cost, which usually is paid in the security posture of the commercialized device.