INSIGHTS | May 22, 2012

ST19XL18P – K5F0A Teardown

4 Metal, 350 nanometer fabrication process, EAL4+ smart card.  A device fabricated in 2002 and yet, today the latest ST19W/N series only main differences are the ROM data bus output width into the decrypt block and the fabrication process (180nm and 150nm shrink).

The device was dipped into a HydroFluoric (HF) bath until the active shielding fell off.  The result of this saved about 10 minutes of polishing to remove the surface oxide and Metal 4 (M4).  This also helps begin the polishing process on the lower layers fairly evenly.

The oxide thickness of a layer once the passivation oxide is removed requires less than 2 minutes per layer to remove.  We purposely stop just before the Metal 3 (M3) surface is exposed leaving the vias visibly clear (there are several gates tied to the ground of the mesh on Metal 4 (M4) as well as the active shield’s begin and end vias.

 

The device was very modularly placed n’ routed.  The MAP consists of asymmetric and symmetric crypto functions (DES, RSA, etc).
The EEPROM control logic is actually in the lower left corner of the EEPROM block.

As Metal 3 (M3) was removed exposing the M2 layer, the device is beginning to not look so complicated.

Metal 1 (M1) shows us all the transistors.  We did not polish down to the poly.  Most of the gates are understandable without it for the purposes of finding the clear data bus.

Most likely, these NVM areas in Figure 7 & 8 are trimming or security violation related.  No further investigation is planned on these areas (it isn’t necessary).

Strangely enough, it is now understandable why ST cannot achieve high performance on the ST19 platform.  Each logic area with access to the clear data bus runs via a high-output driver that is tri-stated (hi-z) when not driven.  This means that all drivers are OR-tied and only one set of 8 drivers are ever active at a time.  This is a very large and cumbersome way of creating a MUX.

 

As time permits, the ST19W and ST19N series will be looked at.  It is expected to again find this kind of pattern.  Overall, finding the clear data bus took 1.5 hours once the images were created.  Most of the 1.5 hours was the alignment of the layers.