

©2019 IOActive, Inc. All rights reserved. [1]

IOActive Security Advisory

Title Android (AOSP) Download Provider SQL Injection (CVE-2018-
9493)

Severity High

Discovered by Daniel Kachakil

Advisory Date April 01, 2019

Affected Products
1. Android Open Source Project (AOSP)

Android versions: 8.0, 8.1, 9 (other versions may be also affected)

Impact
By exploiting an SQL injection vulnerability, a malicious application without any permission
granted could retrieve all entries from the Download Provider, bypassing all currently
implemented access control mechanisms. Also, applications that were granted limited
permissions, such as INTERNET, can also access all database contents from a different
URI.

The information retrieved from this provider may include potentially sensitive information
such as file names, descriptions, titles, paths, URLs (that may contain sensitive parameters
in the query strings), etc., for applications such as Gmail, Chrome, or the Google Play
Store.

Further access to the downloaded contents may be possible as well, depending on the
permissions granted to the app and files.

Background
According to internal documentation, the Android Download Provider is used to handle OTA
updates and the basic download needs of relevant applications such as Gmail, Android’s
Browser (now Google Chrome), or Market (i.e. Google Play Store).

By design, all this information should be restricted to the application that requested the
download or to applications with the explicit permission to access all downloads. This is
why custom permissions and different URI paths exist for this provider.

Technical Details
Access to the Download Content Provider requires different permissions, such as
INTERNET or ACCESS_ALL_DOWNLOADS, depending on the requested URI, as shown in
the AndroidManifest.xml file:

©2019 IOActive, Inc. All rights reserved. [2]

<provider android:name=".DownloadProvider"

 android:authorities="downloads" android:exported="true">

 <!-- Anyone can access /my_downloads, the provider internally restricts

 access by UID for these URIs -->

 <path-permission android:pathPrefix="/my_downloads"

 android:permission="android.permission.INTERNET"/>

 <!-- to access /all_downloads, ACCESS_ALL_DOWNLOADS permission is

 required -->

 <path-permission android:pathPrefix="/all_downloads"

 android:permission="android.permission.ACCESS_ALL_DOWNLOADS"/>

 <!-- Temporary, for backwards compatibility -->

 <path-permission android:pathPrefix="/download"

 android:permission="android.permission.INTERNET"/>

 <!-- Apps with access to /all_downloads/... can grant permissions,

 allowing them to share downloaded files with other viewers -->

 <grant-uri-permission android:pathPrefix="/all_downloads/"/>

 <!-- Apps with access to /my_downloads/... can grant permissions,

 allowing them to share downloaded files with other viewers -->

 <grant-uri-permission android:pathPrefix="/my_downloads/"/>

</provider>

However, the following accessible URI does not require any permission:

• content://downloads/public_downloads/#

We can find a reference to this URI in the source code (DownloadProvider.java)

sURIMatcher.addURI("downloads",

 Downloads.Impl.PUBLICLY_ACCESSIBLE_DOWNLOADS_URI_SEGMENT + "/#",

 PUBLIC_DOWNLOAD_ID);

As its name implies, it is supposed to be used for downloads that are public, but nothing
prevents an attacker from injecting an SQL selection clause to access any row, column, or
table from the database, including the columns that are protected. Also, a URI that allows
access by ID usually does not need any additional selection clause, but it is allowed in this
case.

©2019 IOActive, Inc. All rights reserved. [3]

The selection clause was restricted in previous versions of Android. In the following
commit1, the protection was removed in an attempt to add searching capabilities to the
Download Provider:
Title: Enable search for Downloads

Commit hash: b759707b80987d0cb4ad2a3a78c11702a45a36c2

Change-Id: Ide23c822b97ccab29a341184f14698dc942e8e14

Commit date: 10/05/2016 23:48:01

As we can see in the diff changes, the following highlighted line was removed in that
commit, introducing the vulnerability:
@Override

public query(final Uri uri, String[] projection,

 final String selection, final String[] selectionArgs,

 final String sort) {

 Helpers.validateSelection(selection, sAppReadableColumnsSet);

 SQLiteDatabase db = mOpenHelper.getReadableDatabase();

 ...

Since the selection clause is no longer validated, an attacker would be only limited by the
setStrict(true) further call, which is insufficient to prevent most injections.

It seems that the author of that commit tried to prevent the issue, by adding the following
test to the AbstractDownloadProviderFunctionalTest class:

private boolean isDatabaseSecureAgainstBadSelection() {

 Cursor cursor = null;

 try {

 cursor = mResolver.query(Downloads.Impl.ALL_DOWNLOADS_CONTENT_URI,

 null, "('1'='1'))) ORDER BY lastmod DESC--", null, null);

 }

 catch (Exception e) {

 return true;

 } finally {

1
https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/b759707b80987d0cb4ad2a3a78
c11702a45a36c2

©2019 IOActive, Inc. All rights reserved. [4]

 if (cursor != null) {

 cursor.close();

 }

 }

 return false;

}

However, this test was proven not to be useful, as it will always throw an exception. The
syntax of the underlying SQL statement will be invalid in all cases.

Note that the same vulnerability can also be exploited through different scenarios and URIs:

• No permission required:

o content://downloads/public_downloads/#

• Requiring android.permission.INTERNET:

o content://downloads/my_downloads/

o content://downloads/my_downloads/#

o content://downloads/download/

o content://downloads/download/#

Proof of Concept
To reproduce the issue, run the following adb command:

adb shell content query --uri content://downloads/public_downloads/0 --
where "1=1) OR (1=1"

If the output is empty, make sure that the provider contains some data, by downloading any
file (i.e. a PDF) from Google Chrome or any attachment from Gmail.

Note that the injection also allows access to all private columns that should be restricted by
the projection explicit limitations, as mentioned in the internal documentation2:

Reducing the list of visible columns

Security in the download provider is primarily enforced with two separate mechanisms:

• Column restrictions, such that only a small number of the download provider's columns
 can be read or queried by applications.

• UID restrictions, such that only the application that initiated a download can access
 information about that download.

2 https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/master/docs/index.html

©2019 IOActive, Inc. All rights reserved. [5]

The first mechanism is expected to be fairly robust (the implementation is quite simple,
based on projection maps, which are highly structured), but the second one relies on
arbitrary strings (URIs and SQL fragments) passed by applications and is therefore at a
higher risk of being compromised. Therefore, sensitive information stored in unrestricted
columns (for which the first mechanism doesn't apply) is at a greater risk than other
information.

A straightforward injection based on UNION statements could not be achieved due to the
strict mode enforced in the underlying SQLiteQueryBuilder, but it is possible to extract
all information by exploiting a blind SQL injection. For instance, querying the provider with
this kind of SQL selection clauses will give access to internal and otherwise protected
columns and tables:
adb shell content query --uri content://downloads/public_downloads/0 --
where "1=1) AND (_id=1 AND cookiedata LIKE 'a%') OR (1=1"

Similarly, it is also possible to dump all contents from the request_headers table:

adb shell content query --uri content://downloads/public_downloads/0 --
where "1=1) AND (SELECT header FROM request_headers WHERE _id=1) LIKE 'a%'
OR (1=1"

Note that it is also possible to obtain the same results from an application granted the
INTERNET permission, by either invoking the URI above or the /my_downloads one.

There is a PoC app accompanying this advisory3. From its UI, we can dump several
columns from the Download Provider database. Optionally, it is also possible to include
restricted columns, such as UID, ETag or CookieData, exploiting a blind SQL injection (if
this option is enabled, the process will be slightly slower).

3 https://github.com/IOActive/AOSP-DownloadProviderDbDumper

©2019 IOActive, Inc. All rights reserved. [6]

©2019 IOActive, Inc. All rights reserved. [7]

Fixes
If it does not break any functionality, consider adding the line that was removed, or revert
the above-referenced commit that introduced the vulnerability:
@Override

public query(final Uri uri, String[] projection,

 final String selection, final String[] selectionArgs,

 final String sort) {

 Helpers.validateSelection(selection, sAppReadableColumnsSet);

Mitigation
The vulnerability has been fixed in the official repository. Specifically, in the following
commits, also affecting the Android’s Base Framework:

https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/e73649
07439578ce5334bce20bb03fef2e88b107

https://android.googlesource.com/platform/frameworks/base/+/462aaeaa616e0bb1342e8ef
7b472acc0cbc93deb

https://android.googlesource.com/platform/frameworks/base/+/ebc250d16c747f4161167b5f
f58b3aea88b37acf

Several vendors integrating Android had released security patches for this vulnerability in
October 2018. IOActive recommends applying the latest security patches from your vendor.
If for any reason it is not possible to apply such updates, make sure that your Android
device only contains trusted applications before attempting to download any files,
particularly if they contain confidential information.

Timeline
2018-06-19 IOActive discovers vulnerability

2018-06-29 IOActive reports vulnerability to Google

2018-10-01 Google publishes the fix for the vulnerability

2019-03-30 Presented at RootedCon Security Conference (Spain)

2019-04-01 IOActive advisory published

