
©2024 IOActive, Inc. All rights reserved. [1]

IOActive Security Advisory

Title NET VISION Multiple Vulnerabilities

Severity Low – Medium

Discovered by Daniel Martinez

Advisory Date 2024-03-05

CVE Pending

Affected Products

• NET VISION version 7.20

Background

Socomec, Inc. (Socomec) is an electrical equipment design and manufacturing company,

specializing in low-voltage energy performance in terms of safety, service continuity, quality

and energy efficiency.

NET VISION is a professional network adapter for monitoring and controlling UPS units

from a remote location. It allows direct connection of a UPS to the IPv4 or IPv6 Ethernet

network, thereby enabling remote management of the UPS using a web browser, a

TELNET interface, or an NMS application via SNMP protocol.

Timeline

• 2022-09-29: IOActive discovers the vulnerabilities

• 2023-06-28: IOActive informs Socomec about the identified vulnerabilities

• 2023-11-21: Socomec informs IOActive that the vulnerabilities are fixed in the new
Net Vision card (version 8). IOActive does not have access to the new Net Vision
card (v8) and cannot comment on remediation validation

• 2024-01-09: IOActive notifies the vulnerabilities to INCIBE, the Spanish equivalent of
CERT

• 2024-03-05 IOActive advisory published

https://ioactive.com

©2024 IOActive, Inc. All rights reserved. [2]

Cross-site Request Forgery via Change Admin Password

Severity: Medium

Impact

IOActive saw a general lack of protection against cross-site request forgery (CSRF) attacks.

During a CSRF attack, unauthorized commands are transmitted from a user that the web

application trusts in a manner that is difficult or impossible for the web application to

differentiate from normal actions from the targeted user.

As a result, attackers may trick application users into performing critical application actions

that include, but are not limited to, adding and updating accounts.

A CSRF attack works by including a link or script in a page or email that accesses a site

known to be vulnerable and have unexpired authentication. For example, let us assume

John receives an email from Alice that contains a link or image tag linking to the vulnerable

site as shown below:

If the vulnerable site keeps victim's authentication information in a cookie and the cookie

has not expired, when the victim's browser attempts to load the image or link, it will

successfully submit the payload form with his cookie. The exploit will be executed as an

authenticated user without the victim’s approval or knowledge.

Users are authenticated by a cookie saved in their web browser that could unknowingly

send HTTP requests to a site that trusts them and thereby causes one or more unwanted

actions. Web applications that perform actions based on input from trusted and

authenticated users (change email, change password, add account) without requiring the

user to authenticate to the specific action are vulnerable to CSRF attacks.

Additionally, successful CSRF attacks are very difficult to detect from the application server,

because the attacker is using the authenticated user's browser to perform actions they are

already authorized to do. In the server logs, while the activity may in fact be logged, the

actions will still be coming from the same computer, and thus IP addresses and other

identifying information will be imperceptible between legitimate actions and the attacker's

actions.

http://CSRF_URL/attack.jhtml?c=JavaScript=PAYLOAD/

©2024 IOActive, Inc. All rights reserved. [3]

Proof of Concept

The following shows the functionality where a user can change their password. Crucially,

the application does not request the current password:

Figure 1. Functionality to Change Admin Password

The following HTML code exploits the vulnerability:

<html>

 <body>

 <script>history.pushState('', '', '/')</script>

 <form action="https://10.125.252.66/cgi/set_param.cgi"

method="POST" enctype="text/plain">

 <input type="hidden"

name="xml&user.su.passCheck[0]"

value="IOActive1234&user.su.passCheck[1]=

IOActive1234" />

 <input type="submit" value="Submit request" />

 </form>

 </body>

</html>

When the code was triggered, the password was changed to IOActive1234.

Remediation

IOActive recommends switching from an only-persistent authentication method (cookie or

HTTP authentication) to a transient authentication method, such as cookies plus a hidden

field provided on every form. This type of authentication will help prevent attacks including

CSRF and denial of service.

Another recommended solution is to implement CSRF tokens. CSRF tokens should be

generated on the server-side. They can be generated once per user session or for each

https://10.125.252.66/cgi/set_param.cgi

©2024 IOActive, Inc. All rights reserved. [4]

request. Per-request tokens are more secure than per-session tokens as the time range for

an attacker to exploit the stolen tokens is minimal.

Additional Information: https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

©2024 IOActive, Inc. All rights reserved. [5]

Weak Session Control

Severity: Low

Impact

The application uses a five-digit integer to handle authentication. A five-digit integer is

cryptographically weak. An attacker could try to get a valid session by performing a brute-

force attack over the tmpToken.

Proof of Concept

The following code in /super_user.js handles session management for the

administrative interface:

function runScript(e) {

 //alert(e.keyCode);

 if (e.keyCode == 13) {

 var hashkey2 = Base64.encode($("#login-box

#password").val());

 var tmpToken = getRandomInt(1,1000000);

 Set_Cookie("user_name",$("#login-box #username").val());

 //Set_Cookie("UshaTmpKey2",hashkey2);

 Set_Cookie("tmpToken", tmpToken);

document.getElementById("token").value = tmpToken;

The following request demonstrates how this value is used as a session cookie:

GET /PageTrap.asp HTTP/1.1

Host: 10.125.252.66

Cookie: user_name=admin; tmpToken=295055; UshaAdmin=1

Sec-Ch-Ua: "Not;A=Brand";v="99", "Chromium";v="106"

Sec-Ch-Ua-Mobile: ?0

Sec-Ch-Ua-Platform: "macOS"

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.5249.62

Safari/537.36 Burpito

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,

image/webp,image/apng,*/*;q=0.8,application/signed-

exchange;v=b3;q=0.9

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: iframe

Referer: https://10.125.252.66/menu.asp

Accept-Encoding: gzip, deflate

Accept-Language: en-GB,en-US;q=0.9,en;q=0.8,nl;q=0.7

Connection: close

©2024 IOActive, Inc. All rights reserved. [6]

Remediation

With the goal of implementing secure session IDs, the generation of identifiers (IDs or

tokens) must meet the following properties:

• Session ID Name Fingerprinting: The default name of the web development
framework should be a customized name.

• Session ID Length: The session ID must be at least 128 bits (16 bytes).

• Session ID Entropy: The session ID must be unpredictable (random enough) to
prevent guessing attacks, where an attacker is able to guess or predict the ID of a
valid session through statistical analysis techniques. For this purpose, a good PRNG
(Pseudo Random Number Generator) must be used.

• Session ID Content: The value must be meaningless to prevent information
disclosure attacks, where an attacker is able to decode the contents of the ID and
extract details of the user, the session, or the inner workings of the web application.
The session ID must simply be an identifier on the client side, and its value must
never include sensitive information (or PII). The meaning and business or application
logic associated to the session ID must be stored on the server side, specifically, in
session objects or in a session management database or repository.

Additional Information:

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

	IOActive Security Advisory
	Affected Products
	Background
	Timeline
	Cross-site Request Forgery via Change Admin Password
	Severity: Medium
	Impact
	Proof of Concept
	Remediation

	Weak Session Control
	Severity: Low
	Impact
	Proof of Concept
	Remediation

