
April 19, 2022

Ruben Santamarta
Security Researcher, IOActive

Reverse Engineering of DAL-A
Certified Avionics: Collins’ Pro
Line Fusion — AFD-3700

\ WHITE PAPER \

Research-fueled Security Services

https://ioactive.com

©2022 IOActive, Inc. All Rights Reserved. [2] 4.19.2022

Contents

Notices .. 3

Introduction .. 4

Research Context.. 4

Pro Line Fusion® and the AFD-3700 .. 5

Approach... 16

Attack Surface ... 17

Impact and Safety Implications .. 19

Affected Aircraft ... 29

Technical Analysis ... 31

Reverse Engineering Notes ... 31

Attacking a LynxOS-178-based System ... 33

Security Boundaries .. 35

AFDR-3700 Boot Sequence .. 35

AFD-3700 Health Monitor Application: hm_main ... 37

Vulnerable SNMP Daemon in hm_main ... 39

Exploitation ... 44

AFD-3700 Inter-Partition Communication Mechanisms and Network Connectivity 49

network.cfg Analysis .. 52

Following the Packets ... 58

Finding the Path to snmpd ... 63

WSAStartup .. 64

Create Socket ... 65

Bind Socket .. 66

Recvfrom .. 67

Attack Vectors for snmpd ... 71

1. VM1 .. 71

2. Avionics System LAN: 10.129.25.0 in the ASL ... 72

Attacking AFDR-3700 Drivers .. 75

PCIE.dldd: RESET_MIB_DATA IOCTL Double Fetch .. 75

MERGE.dldd: Memory Corruption Due to Integer Overflow ... 77

Conclusions ... 78

Acknowledgements .. 83

©2022 IOActive, Inc. All Rights Reserved. [3] 4.19.2022

Notices

No Warranties or Representations

The information presented herein is provided “AS IS” and IOActive disclaims all warranties whatsoever,

whether express or implied. Further, IOActive does not endorse, guarantee, or approve, and assumes no

responsibility for nor makes any representations regarding the content, accuracy, reliability, timeliness, or

completeness of the information presented. Users of the information contained herein assume all liability

from such use.

Publicly Available Material

All source material referenced in this presentation was obtained from the Internet without restriction on use.

Fair Use

This primary purpose of this presentation is to educate and inform. It may contain copyrighted material, the

use of which has not always been specifically authorized by the copyright owner. We are making such

material available in our efforts to advance understanding of cyber safety and security. This material is

distributed without profit for the purposes of criticism, comment, news reporting, teaching, scholarship,

education, and research, and constitutes fair use as provided for in section 107 of the Copyright Act of

1976.

Trademarks

IOActive, the IOActive logo and the hackBOT logo are trademarks and/or registered trademarks of

IOActive, Inc. in the United States and other countries. All other trademarks, product names, logos, and

brands are the property of their respective owners and are used for identification purposes only.

No Endorsement or Commercial Relationship

The use or mention of a company, product or brand herein does not imply any endorsement by IOActive of

that company, product, or brand, nor does it imply any endorsement by such company, product

manufacturer, or brand owner of IOActive. Further, the use or mention of a company, product, or brand

herein does not imply that any commercial relationship has existed, currently exists, or will exist between

IOActive and such company, product manufacturer, or brand owner.

Copyright

Copyright © 2022 IOActive, Inc. All rights reserved. This work is protected by US and international copyright

laws. Reproduction, distribution, or transmission of any part of this work in any form or by any means is

strictly prohibited without the prior written permission of the publisher.

©2022 IOActive, Inc. All Rights Reserved. [4] 4.19.2022

Abstract

Modern avionic systems are designed according to the Integrated Modular Avionics

concept. Under this paradigm, safety-certified avionic applications and non-critical airborne

software share the same computing platform but are running at different partitions. In this

context the underlying safety-critical certified RTOS provides the logical isolation, which

should prevent unintended interactions between software with different criticalities.

This paper provides a comprehensive analysis of the architecture and vulnerabilities found

on the Adaptive Flight Display component of the Collins Aerospace’s Pro Line Fusion

solution. This integrated avionics system, deployed both in military and commercial aircraft,

is certified as DO-178B/C Design Assurance Level A.

Introduction

Research Context

A series of precautions must be considered within the context of a vulnerability disclosure

that affects the aviation industry, where even a minimal inaccuracy may be used to discredit

and invalidate the research as a whole. In IOActive’s experience, affected entities in the

aviation sector tend to maintain an opaque attitude, compared with other industries.

Therefore, the burden of the proof is almost entirely on the researcher’s side, which poses a

significant challenge in such a complex field.

This specific scenario requires not only a comprehensive description, a plausible explanation,

and a complete technical analysis, but also enough evidence to sustain the conclusions of

the research. Additionally, it is worth mentioning the inability to physically access neither a

fully working aircraft nor a simulator to legally test the attacks in a live environment.

Neither Collins Aerospace nor its customers or partners provided any technical support to

IOActive: the research has been performed by following a static black-box1 approach, solely

based on the reverse engineering of the firmware, without having physical access to the

hardware.

The main objectives of this research are the following:

• Demonstrate that the target in scope is actually certified for safety-critical operations

• Demonstrate that the target, a safety-critical certified avionics component, can be

compromised, either remotely or via inter-partition attacks, during any phase of flight

• Demonstrate the potential safety implications derived from a compromised target

The structure of this paper, as well as its narrative, have been conceived according to these

objectives. All content in this paper has been included for a reason, even if it appears obvious

1 No access to source code, documentation, or resources beyond what it is publicly available.

©2022 IOActive, Inc. All Rights Reserved. [5] 4.19.2022

or redundant. The reader should carefully note all the references that can be found

throughout the document, as they point out external sources that can be used to contrast the

claims presented herein. Special effort has been put into introducing those concepts for

which there are no references available, without covering in detail others for which a large

amount of literature is already available, such as IMA2.

Disclosure

IOActive and Collins Aerospace have been coordinating the issues herein described since

March 2021.

Several pre-publication versions of this paper were shared with Collins Aerospace. In their

recent letter dated April 7, 2022 they acknowledge the vulnerabilities (“defects” according to

their nomenclature) described in this research and will proceed “to make updates which will

address issues you’ve described as part of our next major release with development starting

this year. Once changes have been made to the software, verification and certification will be

required across multiple configurations and platforms”.

They also asked for deletion of two statements regarding one of the post-exploitation

scenarios as well as the list of the impacted aircraft. Additionally, their assessment of the

potential safety implications is not aligned with ours, as they state that ‘defects do not

adversely impact operational safety’.

IOActive has highlighted these three disputed statements in the paper, to provide the reader

a clear view of both Collins Aerospace and IOActive respective positions.

Disputed statement 1

Disputed statement 2

Disputed statement 3

Pro Line Fusion® and the AFD-3700

Pro Line Fusion from Collins Aerospace is an integrated avionics suite (see Figure 2).3 4 Its

architecture is comprised of multiple systems, and it provides safety-critical functionality.

Figure 1. Pro Line Fusion Banner - Collins Aerospace Website

2 https://en.wikipedia.org/wiki/Integrated_modular_avionics
3 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion
4 Challenger 604 – Pro Line Fusion Tour https://www.youtube.com/watch?v=BbV9iqdfVaM

©2022 IOActive, Inc. All Rights Reserved. [6] 4.19.2022

Figure 2. Pro Line Fusion Avionics Suite - Challenger CL604, Bombardier

In the context of the Pro Line Fusion, the Electronic Flight Instrumentation System (EFIS)

implements at least three5 model AFD-3700 Display Units (DUs, see Figure 3) that provide

display and control capabilities for features such as:

• Synthetic Vision System (SVS)

• Advanced Terrain Functions (ATF)

• Traffic Alert Collision Avoidance System (TCAS)

• Engine Indicating and Crew Alerting System (EICAS)

• Attitude Heading and Reference System (AHRS)

• Flight Management System (FMS)

• Weather Radar System (WXR)

• File Server Application (FSA)

• Flight Display System Application (FDSA)

• Radio Tuning System Application (RTSA)

It is important to clarify that the extent of these aforementioned applications is not limited to

the scope of the AFD-3700, but also usually integrate with multiple systems across different

5 Two in light helicopters/aircraft.

©2022 IOActive, Inc. All Rights Reserved. [7] 4.19.2022

components in the aircraft. For instance, the EICAS functional application in the AFD-3700

DU may consume data from different sensors and systems.

Figure 3. Display Units (AFD-3700)6

At the factory, Collins Aerospace loads the DUs with the runtime system AFDR-3700

(Adaptive Flight Display Runtime), which is certified as DO-178B/C Design Assurance Level

(DAL) A7. The DAL-A is associated with functions whose anomalous behavior could cause or

contribute to a catastrophic failure condition for the aircraft. The AFDR-3700 consists of the

real-time operating system (RTOS), drivers, configuration tables, and applications that enable

the DU to properly operate as well as to perform field loading operations both via USB and

wirelessly through an external data loader, such as the IMS.8 Later on, aircraft manufacturers

can load the DU with the proper functional applications (EICAS, FMS, etc.) and configuration

tables required for their respective aircraft (see Figure 4 and Figure 5).

6 https://support.cessna.com/custconf/pageview?as_id=46540
7 https://en.wikipedia.org/wiki/DO-178B
8 https://www.youtube.com/watch?v=s20Xjq4HnEQ

©2022 IOActive, Inc. All Rights Reserved. [8] 4.19.2022

Figure 4. AFD-3700 Nameplates

Figure 5. AFD-3700 Components

As depicted in Figure 5. AFD-3700 Components, the AFDR-3700 manages the AFD

hardware and software resources, and provides common services that let the functional

applications run. This essentially means that a compromised AFD-3700 Runtime may directly

influence the loaded functional applications.

©2022 IOActive, Inc. All Rights Reserved. [9] 4.19.2022

The files that enabled this research were retrieved from the publicly accessible Rockwell

Collins support portal (see Table 1).9 This server exposed unauthenticated downloads,

including the Black Label (production release) version of the ARINC665-3 Loadable Software

Parts of AFDR-3700 intended for distribution to King Air10 aircraft.

Table 1. Exposed files

File Description

COL_Application01.001 LynxOS-178 Kernel Downloadable Image (KDI) (AFDR-3700)

COL_Application01.002 Rockwell Collins AFDR-3700 User Filesystem

COL_Application01.luh A665-3 Load Upload Header

COL_Table01.001 Product version and certification

COL_Table01.002 Product version and certification

COL_Table01.004 VCT for the following functional applications: EICAS-6000, RTSA-6000,
and ECDA-6000

COL_Table01.005 VCT for the following functional application: ATF-3500

COL_Table01.003-033 AFD Functional Configuration Tables

COL_Table01.luh A665-3 Load Upload Header

FILES.lum and LOADS.lum A665-3 LUM files

COL_Table01.012 (cached)

IOActive found a version of this file (accessible via Google searches)
that was different from the file downloaded from the server. The cached
version is the SL03.vct file for the FDSA-6500 functional application.

9 https://web.archive.org/web/20210119190712/https://portal.rockwellcollins.com/web/support-self-service/kidde-claim/-

/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet

_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fs

upport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_

INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview

10 https://en.wikipedia.org/wiki/Beechcraft_Super_King_Air

https://web.archive.org/web/20210119190712/https:/portal.rockwellcollins.com/web/support-self-service/kidde-claim/-/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fsupport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview
https://web.archive.org/web/20210119190712/https:/portal.rockwellcollins.com/web/support-self-service/kidde-claim/-/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fsupport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview
https://web.archive.org/web/20210119190712/https:/portal.rockwellcollins.com/web/support-self-service/kidde-claim/-/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fsupport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview
https://web.archive.org/web/20210119190712/https:/portal.rockwellcollins.com/web/support-self-service/kidde-claim/-/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fsupport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview
https://web.archive.org/web/20210119190712/https:/portal.rockwellcollins.com/web/support-self-service/kidde-claim/-/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fsupport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview

©2022 IOActive, Inc. All Rights Reserved. [10] 4.19.2022

File Description

COL_Table01.003 (cached)

IOActive found a version of this file (accessible via Google searches)
that was different from the file downloaded from the server. The cached
version is the SL02.vct file for the FSA-6000 functional application.

An initial analysis of the COL_Application01.001 and COL_Application01.002 files

revealed an AFDR-3700 version dating back to 2014 with part number 810-0346-001 (see

Figure 7), which matches the official part number referenced in official documents from

Collins (see Table 1. Exposed files).

Figure 6. Pro Line Fusion Course for King Air11

11 https://portal.rockwellcollins.com/documents/1904088/2147097/SYB5230821913.pdf/ed9d4f14-65f2-764d-78ab-
bd8995b30f61

©2022 IOActive, Inc. All Rights Reserved. [11] 4.19.2022

Figure 7. Detail of nameplate.txt and TSO_nameplate.txt (C113a) Files12 Found in

Col_application01.002 (AFDR-3700 USRFS)

LynxOS-17813 is a POSIX/ARINC-653 conformant real-time operating system (RTOS) that

has been granted DO-178B/C DAL-A certification by FAA/EASA regulators for safety-critical

applications. The origin of the LynxOS-178 is VMOS, an avionics RTOS developed by

Rockwell Collins.

The following statement14 is publicly available on the Lynx (manufacturer of LynxOS, which at

the time was named LynuxWorks) website, showing that LynxOS-178 is used in several other

components besides the AFD runtime:

Figure 8. LynxOS-178 Running in Additional Components

Table 2 provides the complete list of the archives that were extracted from the

‘Col_Application.002’ file system.

Table 2. Rockwell Collins USRFS files

12
https://rgl.faa.gov/Regulatory_and_Guidance_Library/rgTSO.nsf/0/dd968e96d184041e862579f10070b452/$FILE/TSO-
113a.pdf
13 https://www.lynx.com/products/lynxos-178-do-178c-certified-posix-rtos
14 https://www.lynx.com/press-releases/lynxos-178-rtos-deployed-by-rockwell-collins-in-pro-line-fusion-series-of-flight-
deck-systems

©2022 IOActive, Inc. All Rights Reserved. [12] 4.19.2022

File Type Description

SL01.vct LynxOS-178 virtual machine (VM)
configuration table

VCT for Simple Display
Application (SDA)

SL03.vct LynxOS-178 VM configuration
table

VCT for the following functional
applications: EICAS-6000, RTSA-
6000, and ECDA-6000

SL04.vct LynxOS-178 VM configuration
table

VCT for the following functional
application: ATF-3500

nameplate.txt Text file
Product and certification
information

tso_nameplate.txt Text file
Product and certification
information

pcieinfo_default.info LynxOS-178 driver info file Default info file for PCIE driver

pcieinfo_policing_on_

100MbsFull.info LynxOS-178 driver info file Unused info file for PCIE driver

pcieinfo_policing_on_

autoneg.info LynxOS-178 driver info file Unused info file for PCIE driver

afdx_asl_info_0 LynxOS-178 driver info file Default info file for AFDX driver

afdx_asl_info_default

_0 LynxOS-178 driver info file Default info file for AFDX driver

network.cfg Proprietary Collins Aerospace file
Network (Avionics System LAN)
Configuration file for AFDX and
PCIE drivers

norflash.info LynxOS-178 driver info file
Default info file for NORFLASH
driver

iod.info LynxOS-178 driver info file Default info file for IOD driver

touch.info LynxOS-178 driver info file Default info file for TOUCH driver

rs422.info LynxOS-178 driver info file Default info file for RS422 driver

apm_info.info LynxOS-178 driver info file Default info file for APM driver

rtc.info LynxOS-178 driver info file Default info file for RTC driver

fat32fs.info LynxOS-178 driver info file Default info file for FAT32FS driver

usb_20rs.info LynxOS-178 driver info file
Default info file for USB_20RS
driver

©2022 IOActive, Inc. All Rights Reserved. [13] 4.19.2022

File Type Description

ge4A.info LynxOS-178 driver info file Default info file for GE4 driver

ge4B.info LynxOS-178 driver info file Unused info file for GE4 driver

gecko.info LynxOS-178 driver info file Default info file for GECKO driver

merge.info LynxOS-178 driver info file Default info file for MERGE driver

ati_info_0 LynxOS-178 driver info file
Default info file for ATI_DRVR
driver

pdkminfo_afd3700.info LynxOS-178 driver info file Default info file for PDKM driver

vm0.pct Proprietary Collins Aerospace file VM0 process configuration table

nand_system.info LynxOS-178 driver info file
Default info file for
NAND_FS_DRVR driver

ONFI_nand_bank{0-

7}.info LynxOS-178 driver info file
Info files related to
NAND_FS_DRVR

drmlite_c1.info LynxOS-178 driver info file Info file related to DRMLITE driver

drmlite_c4.info LynxOS-178 driver info file Info file related to DRMLITE driver

drmlite_nodeferred.in

fo LynxOS-178 driver info file Info file related to DRMLITE driver

drmlite_c5.info LynxOS-178 driver info file Info file related to DRMLITE driver

drmlite_c3.info LynxOS-178 driver info file Info file related to DRMLITE driver

drmlite_c2.info LynxOS-178 driver info file Info file related to DRMLITE driver

app_launcher Proprietary Collins Aerospace
LynxOS-178 User Binary (XCOFF)

Collins Aerospace proprietary
binary that executes the
application configured in the VCT’s
PCT file

mkffs Proprietary Collins Aerospace
LynxOS-178 User Binary (XCOFF)

Creates a flash filesystem for the
VM

ffsck Proprietary Collins Aerospace
LynxOS-178 User Binary (XCOFF)

Validates the VM’s filesystem

arinc615a Proprietary Collins Aerospace
LynxOS-178 User Binary (XCOFF)

ARINC615A data loading
functionality

hm_main Proprietary Collins Aerospace
LynxOS-178 User Binary (XCOFF)

Mandatory Health Monitoring/main
application running in the
privileged VM0

©2022 IOActive, Inc. All Rights Reserved. [14] 4.19.2022

File Type Description

afdx_asl_drvr.obj
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

AFDX Avionics System LAN driver

pcie.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

Low-level PCIE communication
driver for End-System

norflash.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

NORFLASH driver

iod.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

Flash partitions related driver

touch.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

Touchscreen UART driver

rs422.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

RS422 driver

apm_drvr.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

Aircraft Personality Module driver

rtc.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

Real-Time Clock driver

fat32fs.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

Fat32 Filesystem driver

usb_20rs.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

USB 2.0 driver

ge4.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

Graphics Engine 4 driver

gecko.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

Graphics Engine related driver

merge.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

Resource Manager driver

ati_drvr.obj
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

ATI RADEON E2400 driver

©2022 IOActive, Inc. All Rights Reserved. [15] 4.19.2022

File Type Description

nand_fs_drvr.dldd
Proprietary Collins Aerospace
LynxOS-178 Dynamic Loadable
Device Driver (XCOFF)

NAND FS driver

drmlite.dldd Proprietary Collins Aerospace
LynxOS-178 User Binary (XCOFF)

Device Resource Manager

pdkm.dldd Proprietary Collins Aerospace
LynxOS-178 User Binary (XCOFF)

Graphics Engine related driver

sda Proprietary Collins Aerospace
LynxOS-178 User Binary (XCOFF)

SDA (Simple Display App - Field
Software load/validation)

©2022 IOActive, Inc. All Rights Reserved. [16] 4.19.2022

Approach

The top priority for this research is to ensure the technical accuracy of the claims presented

herein.

As a result, IOActive decided that both the firmware and the security issues found would be

analyzed, documented, and reported solely based on the disassembled code, without relying

on a decompiler’s output or an emulator. This avoids an additional layer of uncertainty

derived from the use of a specific tool, which eventually might be called into question by the

affected entities, as happened previously. This approach also facilitates the independent

verification and reproduction of the results in a manner consistent with the scientific method.

This research is based on a static reverse engineering analysis of the exposed files listed in

Tables 1 and 2, assisted by the information collected from publicly available materials, such

as technical documents, presentations, maintenance manuals, patents, FAA/EASA

publications, resumes, and training videos. These sources are referenced throughout the

document.

Unfortunately, there is a lack of publicly accessible technical literature comprehensively

detailing real-world vulnerabilities affecting either safety-critical avionics or more specifically

Lynx178-OS-based deployments. Thus, IOActive believes it is important to document every

step of this research as thoroughly as possible, to demonstrate the attack vectors as well as

to bring some light into this opaque area of risk.

The AFDR-3700 system has been fully reverse engineered using IDA Pro15, reconstructing

the deterministic network configuration, execution flows and interactions between their

different components, identifying the security boundaries, and eventually discovering security

vulnerabilities that would allow a malicious actor to compromise the AFDR-3700, thus taking

control of the AFD-3700 DUs and its functional applications.

This technical document is intended to comprehensively detail these efforts, such that it can

be used to demonstrate the feasibility, validity, and reproducibility of the identified security

issues as well as the potential safety impacts.

15 IDA Pro - https://hex-rays.com/ida-pro/

©2022 IOActive, Inc. All Rights Reserved. [17] 4.19.2022

Attack Surface

In the context of an IMA architecture, the focus of this work has been put on finding those

attack vectors that would enable either remote or inter-partition exploitation of safety-critical

certified avionics during any phase of a flight. Thus, attack vectors requiring physical access

through USB or maintenance connectors as well as those depending on an active ‘on-ground’

discrete signal (see image below) were excluded from the priorities.

Figure 9. Data Loading Capabilities in Pro Line Fusion Suite

This means that data loading attacks were not considered (all data loading needs to be

performed while the aircraft is on ground) despite being an otherwise valid attack vector

actively evaluated by the aviation industry. The main reason behind this decision is our past

experience with Boeing 787 research16. IOActive discovered a significant number of issues in

the ARINC615 and ARINC665 (data loading standards) implementation, but unfortunately,

the inherent mitigations for this attack surface were used to discredit that research,

regardless of whether they were applicable. It is also worth noting that one of the main

16 https://ioactive.com/arm-ida-and-cross-check-reversing-the-787s-core-network/

©2022 IOActive, Inc. All Rights Reserved. [18] 4.19.2022

arguments employed against that research’s conclusions was that the kind of security issues

found in non-certified systems would never occur in certified avionics.

Although this research does not cover the data loading attack surface in detail, analysis of the

binaries involved17 revealed that the security posture of the data loading logic implemented in

the AFDR-3700 is not any better: it lacks any kind of cryptographically secure logic to validate

the integrity and authenticity of the loadable software parts, neither of which are encrypted or

signed, thus relying on CRC only.

However, as will be elaborated, the devices and network infrastructure involved in the data

loading functionalities (including airborne navigation databases) are actually considered as

part of a plausible attack path.

This research was not focused on finding as many issues as possible, as it does not provide

any actual value beyond a certain point. Instead, the priority was to find a minimum set of

those vulnerabilities and logic issues that allow an attacker to bypass the implemented

security boundaries in a safety-critical certified avionics product.

17 ‘sda’, ‘hm_main’ and ‘arinc615a’

©2022 IOActive, Inc. All Rights Reserved. [19] 4.19.2022

Impact and Safety Implications

The following section elaborates the approach IOActive followed to demonstrate that the

AFD-3700 is a DAL-A device providing actual safety-critical functionalities. This is an

important topic in this research, as entities may adduce that the AFD-3700 is certified as a

DAL-A merely due to a specific customer request, but actually its functionality is not aligned

with a safety-critical certification.

Figure 10. King Air 250 Specification18

As illustrated in Figure 11, the AFD-3700 is authorized according to the TSO-C113a19 , the

FAA’s Technical Standard Order for airborne multipurpose electronic displays intended for

use as an electronic display in the flight deck.

Figure 11. Detail of the AFD-3700 Nameplate

From the requirements that TSO defines, we can highlight the following:

18 http://www.africair.com/wp-content/uploads/2016/03/SD-KA250-Unit-250-to-TBD-2015-Oct.pdf
19 http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgTSO.nsf/0/dd968e96d184041e862579f10070b452/$FILE/
TSO-113a.pdf

©2022 IOActive, Inc. All Rights Reserved. [20] 4.19.2022

Figure 12. TSO C113a Requirement Details

An entity applying for the TSO C113a approval would need to define the Failure Condition

Classifications as well as the Software Qualification, bearing in mind that both should be

consistent with each other. Basically, this means that it should not be reasonable to apply for

a TSO C113a approval by stating that a Primary Flight Display is providing the pilots with

attitude indication, while its Software Qualification is DO-178B/C DAL-D (a failure will have a

minor effect on the aircraft, crew, or passengers).

IOActive does not have access to the Collins safety analysis documents that were shared

with the FAA as part of their application for the TSO C113a. However, we can use certain

information to confirm that the Software Qualification for the AFD-3700 is DAL-A, which could

then be used to infer the Failure Condition Classifications, and vice-versa.

These are the four elements that we will use to perform this task:

• Exposed files

• Resumes (from publicly available websites)

• FAA’s Advisor Circular 25-11B

• FAA’s Airworthiness Directives

Exposed Files

As illustrated in Figure 7 and Figure 11. Detail of the AFD-3700 Nameplate, the product is

certified for DO-178B A/D. Now the task is to demonstrate that the DAL-D certification is not

aligned with the main functionality performed by the AFDR-3700, in order to prove the AFDR-

3700 is actually DAL-A software.

©2022 IOActive, Inc. All Rights Reserved. [21] 4.19.2022

Based on the analysis of the exposed files, it is possible to determine that the following

example applications and file systems20 depend on the integrity of AFDR-3700 to run

properly.

Applications:

• ATF-3500 (Advanced Terrain Functions)

• EICAS-6000 (Engine Indication Crew Alerting System) (Figure 14, VCT1648)

Figure 13. EICAS-6000 Showing an Engine Fire Alert21

• RTSA-6000 (Radio Tuning Software Application) (Figure 14, VCT409)

• FDSA-6500 (Flight Display System Application) (See Table 1. Exposed files

COL_Table01.012)

Airborne Navigation Databases:

• SVS-RWY (Synthetic Vision System - Airport/Runway) (Figure 15, VCT363)

• SVS-OBST (Synthetic Vision System - Obstacles) (Figure 15, VCT1265)

• HRTDB (Terrain Awareness Warning System - High Resolution Terrain Database)

(Figure 15, VCT1322)

Filesystems:

• Onboard Maintenance System Application

• Onboard Data Loader Application

20 The functional applications and file systems depend on the integrity of AFDR-3700, so if it is compromised via a VM0
exploit as it is herein described, then it would be possible to take control of them.
21 https://www.youtube.com/watch?v=jwUdYwIyWIw&list=PLMBKNyGwDnjoiGp6R5QxtfR9VCHUPl4X1

©2022 IOActive, Inc. All Rights Reserved. [22] 4.19.2022

• Onboard Maintenance System Tables

• IMA Configuration Index Table (ICIT)

Figure 14. S1-SL03.vct - AFDR-3700 file showing functional applications

©2022 IOActive, Inc. All Rights Reserved. [23] 4.19.2022

Figure 15. S1-SL04.vct – Mounted filesystems

©2022 IOActive, Inc. All Rights Reserved. [24] 4.19.2022

Resumes

The following extracts from the publicly available resumes of Collins’ engineers provide a

clear indication that the EFIS project, and thus the AFDR-3700, in the Pro Line Fusion

product line is being developed following DAL-A standards (core applications such as EICAS

or FDSA may be certified as DAL-B or above)

Figure 16. Resume of Engineer #1

Figure 17. Resume of Engineer #2

©2022 IOActive, Inc. All Rights Reserved. [25] 4.19.2022

FAA’s Advisor Circular 25-11B

The FAA’s Advisor Circular 25-11B provides a guidance for design, integration, installation

approval of electronic flight deck displays22, which will be used to check the consistency

between the safety assessment required by the Software Failure Conditions and the Software

Qualification.

The following examples on the hazard classification level can be linked directly to some of the

scenarios that can be achieved by compromising the AFDR-3700 (see Figure 90. Scenario

for a Compromised AFDR-3700) which provide the malicious actor the ability to maliciously

influence the functional applications (e.g. EICAS and FDSA) that depend on it. At this point

we should recall that catastrophic failures in the Failure Condition Classifications would

require a DAL-A Software Qualification to be consistent.

Figure 18. Hazard Classification Level for Display of Misleading Attitude Information

Figure 19. Hazard Classification Level for Display of Misleading Engine Information

22 https://www.faa.gov/documentlibrary/media/advisory_circular/ac_25-11b.pdf

©2022 IOActive, Inc. All Rights Reserved. [26] 4.19.2022

The following point in the guidance relates to a Windowing architecture.

Figure 20 25-11B guidance

We can directly match the point above with the resume in Figure 21, where the DS6000

Window Manager application is developed under the DAL-A standard, meaning that at least

one of the windows contains DAL-A data.

Figure 21 Resume from Engineer #3

VAPS XT23 is a safety-critical DO-178B/C DAL-A HMI for avionics systems, which is being

used as part of the development of functional applications for the Pro Line Fusion DUs.

23 https://www.presagis.com/en/product/vaps-xt/

©2022 IOActive, Inc. All Rights Reserved. [27] 4.19.2022

FAA’s Airworthiness Directives

It was also possible to confirm that the AFD-3700 sustains safety-critical functionality by

consulting the Airworthiness Directive database published by the FAA:

1. A potential failure in the ASIC of the AFD-3010 (a previous version of the AFD-3700)

required the release of an Airworthiness Directive24 (AD) in 2002.

Figure 22. Summary of the AD for the AFD-3010

2. A potential failure in the FDSA-6500 functional application (One of the applications

depending on the AFDR-3700, see Table 1. Exposed files) required the release of an

AD25 from the FAA/EASA in 2019, to address an “unsafe condition.”

Figure 23. Summary of the AD for the FDSA-6500

24 https://www.govinfo.gov/app/details/FR-2002-10-16/02-25717/summary
25 https://www.federalregister.gov/documents/2021/03/25/2021-06156/airworthiness-directives-rockwell-collins-inc-flight-
display-system-application

©2022 IOActive, Inc. All Rights Reserved. [28] 4.19.2022

This AD provides a clear description of the safety problem:

Figure 24 Unsafe Condition description

Obviously, this kind of catastrophic error can only be caused by a failure of a DAL-A

software, assuming there is no single point of failure in safety-critical avionics.

Thus, it is reasonable to assume our initial premise of the AFDR-3700 being an actual

DAL-A sustaining safety-critical functionality is correct, as we have that:

• The FDSA-6500 is a DAL-A application, managed by a DAL-A Window Manager,

running in a DAL-A device.

• The DAL-A FDSA-6500 functional application can only rely on a DAL-A AFDR-3700

according to the “Rely-Guarantee” model, used in certification of modular systems.

This means that application X (FDSA-6500) is guaranteed to access the resources

provided by system Y (in this case the AFDR-3700). This must be true, otherwise it

could not be certified as application X (DAL-A) would be relying on a system Y that is

certified using a lower level (such as DAL-D). That situation does not guarantee the

proper functioning of application X, which breaks the model.

Also, the AFD-3700 DUs are generally part of the Master Minimum Equipment List (MMEL) of

a Pro Line Fusion-equipped aircraft.

©2022 IOActive, Inc. All Rights Reserved. [29] 4.19.2022

Figure 25 MMEL Textron Aviation Model 30026

Potentially Affected Aircraft

Based on reputable publicly available information, the list of those aircraft potentially

equipped with the impacted version of the Pro Line Fusion suite27 may include, but is not

limited to:

• Embraer Legacy 450/50028 (Business)

• Gulfstream G28029 (Business)

• Bombardier Global 5000/600030 (Business)

• Bombardier Challenger 60431 (Business)

26 https://fsims.faa.gov/wdocs/mmel/be-300_rev_10.pdf
27 It does not mean all these aircraft are vulnerable. This requires to be evaluated on a case-by-case basis.
28 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion/Embraer-Legacy-450-
500
29 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion/Gulfstream-G280-
With-Pro-Line-Fusion-And-HGS
30 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion/Pro-Line-Fusion-For-
Bombardier-Global-5000-6000
31 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Platforms/Bombardier/Challenger-604/Avionics

©2022 IOActive, Inc. All Rights Reserved. [30] 4.19.2022

• Beechcraft King Air32 (Military/Business)

• Cessna Citation CJ1+, CJ2+, and CJ333 (Business)

• Viking Air CL-125T, CL-41534 (Firefighting)

• Embraer KC-39035 (Military)

IOActive selected reputable, published sources for the above information such as

company websites to compile this list, we recognize not all reputable sources are created

accurate or remain accurate as time progresses.

32 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion/Pro-Line-Fusion-
Upgrade-For-Beechcraft-King-Air
33 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion/Pro-Line-Fusion-
Upgrade-For-Citation-Cj3
34 https://www.ainonline.com/aviation-news/business-aviation/2019-03-19/viking-launches-avionics-upgrade-its-fire-
bombers
35 https://www.collinsaerospace.com/-/media/project/collinsaerospace/collinsaerospace-website/product-
assets/marketing/k/kc-390-brochure-0711.pdf?rev=787c1c35ebdd4cbebb2365fdd748b686

Disputed statement 1

A pre-publication version of the paper shared with Collins Aerospace contained a

list of affected aircraft, based on publicly available information.

Collins Aerospace explicitly communicated to IOActive in a letter dated April 7,

2022 that:

• The list was incorrect.

• A corrected list of the affected aircraft will not be provided as it is not

necessary to support the research.

IOActive considers that this information is certainly necessary to support the

research, as it provides a valuable information about its impact.

That original list included certain commercial and military Airbus models, which

have been removed from this current list, according to some consistent information

received from different sources.

If any additional information is received, that clearly demonstrates this list is still

incorrect, IOActive will proceed to update the paper accordingly, also publicly

rectifying if required.

©2022 IOActive, Inc. All Rights Reserved. [31] 4.19.2022

Technical Analysis

Reverse Engineering Notes

The KDI (COL_Application01.001)contains a symbol table where each entry is 0x12

bytes (see Figure 27). The first 8 bytes hold the symbol name followed by its address. If the

symbol name length is longer than 8 bytes, the first 4 bytes are then NULL and the next 4

bytes contain an offset into an array of strings where the symbol name can be resolved (see

Figure 26).

For the remaining binaries (XCOFF), the symbols and debug information were found in

VM0’s hm_main as well as in most of the drivers.

Figure 26. Kernel Symbol Table Structure

Figure 27. Detail of Kernel Symbol Table

©2022 IOActive, Inc. All Rights Reserved. [32] 4.19.2022

It was possible to infer the PowerPC family through one of the CPU Support Package (CSP)

functions in the kernel (see Figure 28).

Figure 28. Kernel csp_pre_init Function

At 0xB0050540 the CPU ID 0x1302 indicates an AMCC PowerPC 440EP. This is also

corroborated by the register values used during the initialization of the on-chip Ethernet MAC

controller in the pcie.dldd driver, which corresponds to the PowerPC 4XX family.

©2022 IOActive, Inc. All Rights Reserved. [33] 4.19.2022

Attacking a LynxOS-178-based System

Figure 29. LynxOS-178 Description (Extracted from LynxOS-178 documents36 Found at GitHub)

From a functional and security perspective, a LynxOS-178 target is more similar to any

modern desktop OS than the usual RTOS found in most Common-Off-The-Shelf (COTS)

embedded devices (see Figure 29).

Figure 30. LynxOS-178 Architecture (Extracted from Leaked LynxOS-178 Documents36)

36 https://github.com/blackqbit/lynxos-178_arm_docs/blob/main/2203-00_los178_ig.pdf

©2022 IOActive, Inc. All Rights Reserved. [34] 4.19.2022

It is highly recommended to review the documents referenced in Figure 30 to get a complete

understanding of the LynxOS-178 environment. At a high level, there are four important

concepts that need to be briefly introduced to provide the required context:

1. VCT files

Figure 31. VCT Definition

It is important to clarify that despite the naming conventions, LynxOS-178 is not a

hypervisor. The VM concept in this context is similar to the process concept in any

modern desktop OS: neither memory nor resources are shared between the VMs.

From now on, the VM term will be used according to the LynxOS-178 specification.

2. VM0

VM0 is a unique VM with special privileges. These privileges are similar to the root

privileges in a UNIX system. For example, VM0 can override protections set in other

VMs and can reboot the computer. In addition, VM0 monitors the state of the

processes and threads contained within the other VMs. This is crucial to understand

the implications of this research because we are exploiting an application running in

VM0, so a successful attack leads to complete control over the AFD-3700 system, as

will be elaborated in the coming sections.

3. Inter-Partition Mechanisms

As defined by ARINC-653 inter-partition communication (communication between

VMs) is based on message passing through message ports. These messages are

exchanged through channels, which are a logical link between a source VM and one

or more destination VM. In the context of the LynxOS-178, the different VMs can send

and receive messages through multiple channels via defined access points, called

ports (queuing or sampling).

The standard does not define the underlying transport mechanism, so it is transparent

to the applications, allowing ARINC 653 applications to communicate in the same way

regardless of whether they run on the same shared computing resource or even

across an AFDX avionics network. These communication flows are fully deterministic

and are statically defined as part of the system configuration process.

The analysis of this implementation (developed by Collins Aerospace), including its

configuration, has been a core part of this research as it helped to demonstrate the

plausible attack paths.

©2022 IOActive, Inc. All Rights Reserved. [35] 4.19.2022

4. Avionics System LAN

A Pro Line Fusion-equipped aircraft may be considered an e-Enabled aircraft, thus

presenting certain functional similarities to other e-Enabled aircraft, such as the

Boeing 787 or an Airbus A380. In this case, the AFDX network implemented by

Collins Aerospace is called the ‘Avionics System LAN.’ In this network we can find the

usual components, such as AFDX switches, data concentrators (IOC) and data

loaders, as well as the AFD-3700 Dus obviously.

Security Boundaries

In order to bypass the security boundaries implemented in the AFDR-3700 we are required to

uncover vulnerabilities that enable executing arbitrary code in a privileged domain, either

VM0’s main app or kernel/drivers, coming from a less privileged partition (VM) or even

remotely, through the Avionics System LAN.

In general terms, the ability to compromise a non-certified partition running DAL D/E

applications (i.e. In-Flight Entertainment Systems) should be assumed. For the B/C levels,

this task may be more difficult as the code requires additional certification requirements.

AFDR-3700 Boot Sequence

Figure 32. Regular Boot Sequence in AFD-3700

The boot sequence depicted in Figure 32 may vary according to the boot mode (AFDR-3700

defines six different boot modes described below) and its corresponding VCT, but the AFDR-

3700 implements a common approach to launch the required VM applications.

App_launcher is the main binary that runs by default for any VM defined in the VCT file.

Actually, this binary is in charge of parsing the Collins Aerospace’s Process

Configuration Table file referenced by PctPathFName (only vm0.pct was present in

the leaked files) and launching the corresponding application defined in it. This PCT file

format is not documented, so it is considered a custom part added by Collins Aerospace to

the VCT logic.

©2022 IOActive, Inc. All Rights Reserved. [36] 4.19.2022

Figure 33. S1-SL03.vct

In Figure 33 at line 42, we can see the reference to the vm0.pct file, which app_launcher

has to parse in order to know the process that needs to be launched.

©2022 IOActive, Inc. All Rights Reserved. [37] 4.19.2022

Figure 34. vm0.pct

As shown in Figure 34, the vm0.pct file contains the reference to the binary implementing

the functional application that should be running in that specific VM, in this case hm_main for

VM0.

AFD-3700 Health Monitor Application: hm_main

This is a Collins Aerospace’s application which implements part of the Health Monitoring logic

mandated by the ARINC 653 standard. In addition, it is the core user-mode application in the

AFDR-3700 as it initializes, supervises, and controls key functionalities of the DU. Essentially,

the AFD-3700 cannot run properly without a fully working hm_main application.

As previously mentioned, the VM0 partition is, by default, a privileged partition within the

LynxOS-178 architecture. From a security perspective, this has several implications. By

exploiting the hm_main application, we would gain control over key functionalities that can be

used to fully compromise the entire LynxOS-178 deployment. For instance, once the ability to

execute code in hm_main has been achieved, it is possible to directly load an arbitrary driver

via the dr_install (see Figure 35) syscall, which requires the VM0’s UID.

©2022 IOActive, Inc. All Rights Reserved. [38] 4.19.2022

Figure 35. dr_install Partial Implementation

©2022 IOActive, Inc. All Rights Reserved. [39] 4.19.2022

Vulnerable SNMP Daemon in hm_main

With this information in mind, it seems clear that hm_main is a top priority. The initial analysis

of the binary revealed a snmpd daemon, which was found to be vulnerable (see Figure 36) to

a previously unknown vulnerability.

Curiously, this snmpd implementation is based on the code37 provided in “TCP/IP Illustrated

Volume 2 – the Implementation38.” Although the PowerPC assembly presented herein

partially matches the original code, some modifications have been added by Collins

Aerospace developers; for instance, a bounds check in .a1readlen, which receives an

additional parameter in comparison to the original implementation. Also, the dynamic memory

allocated for the linked list in the original code has been moved to the stack39 in the hm_main

implementation. Finally, some fields in the internal structures have been removed.

This SNMP implementation is prone to, at least40, a stack-based buffer overflow due to a lack

of bounds checking in the a1readoid function while parsing Object Identifiers (OIDs).

37 https://cis.temple.edu/~ingargio/cis307/software/TCPIP-vol2/snmp/
38 https://en.wikipedia.org/wiki/TCP/IP_Illustrated
39 Memory is statically allocated due to LynxOS-178 VMs deterministic constraints
40 There are additional vulnerable paths that have not been elaborated in this paper.

©2022 IOActive, Inc. All Rights Reserved. [40] 4.19.2022

Snmpd invokes snmp_poll_request to receive SNMP requests through

snmp_sock_recv, which limits the size of the packet to 0x59C bytes (see 0x10012084 in

Figure 36 and MTU values at Figure 78. Rx Configuration Index Table and Rx Configuration

Table). The received packet is parsed by snparse and eventually transformed to an internal

format by sna2b.

Figure 36. Vulnerable hm_main Code Flow

snparse successfully validates the initial structure of the received SNMP packet, eventually

reaching the variable bindings part, where it fills a statically allocated doubly-linked list with

pointers to the bindings, performing this operation until the entire packet is parsed. It is worth

mentioning that the OID entries within this linked list are not parsed at that point. The number

of nodes in the linked list is fixed to 20, each of them intended to hold a variable binding entry

from the SNMP packet, as it is statically initialized in the stack by the link_bindings

function.

Sna2b is in charge of transforming those entries into an internal structure. This structure,

which is allocated in the stack, also holds additional structures, one of which is intended to

©2022 IOActive, Inc. All Rights Reserved. [41] 4.19.2022

hold the OID bytes into an array that has a fixed size of 32 * sizeof(short) (0x40

bytes).

However, sna2b does not validate the length of the ASN1_OBJID element, which is returned

by a1readlen (red basic block in Figure 37) before invoking a1readoid, thus passing this

potentially malicious length as a parameter (see Figure 37).

Figure 37. Code Flow with a1readlen

©2022 IOActive, Inc. All Rights Reserved. [42] 4.19.2022

a1readoid then assumes it has to copy the OID bytes from the variable binding entry into

the fixed OBJID array (0x40 bytes) until it reaches the potentially malicious length (yellow

basic block in Figure 38). As this length is an attacker-controlled value, as a1readoid will

corrupt the stack by writing controlled values (OID bytes, see Figure 40. Wireshark Dissection

of Exploit Packet) out of the bounds of the aforementioned fixed OBJID array (red basic

blocks in Figure 38), which can be then leveraged to execute arbitrary code.

Figure 38. Vulnerable Code Flow

©2022 IOActive, Inc. All Rights Reserved. [43] 4.19.2022

We can clearly show the underlying problem if we look at certain original parts from the

‘TCP/IP illustrated v2’ code in Figure 39. As objidlen is controlled, a1readoid will end up

corrupting memory in the fixed id array within the objid structure. Although the code in the

Pro Line fusion snmpd daemon is partially different, the original vulnerability was not spotted

and survived the certification process.

Figure 39. TCP/IP Illustrated – Original Vulnerable Code

©2022 IOActive, Inc. All Rights Reserved. [44] 4.19.2022

Exploitation

The exploit packet is limited to 0x59C bytes as it has been previously mentioned (see Figure

40). The stack space allocated for the linked list of bindings is 0xC90 bytes. Although there

are several options to approach the exploit the most efficient is shown in the following image.

It is worth mentioning that no compiler-level exploit mitigations were found.

Each of the nodes in this list is 0xA0 so in order to comply with all the requirements and still

be able to corrupt the stack to gain code execution, the exploit will contain up to 20 bindings.

The first 19 bindings will be regular ones, occupying the minimum number of bytes to be

valid, so we can save space for the payload in the last one, as shown in the image below.

Figure 40. Wireshark Dissection of Exploit Packet

Each of these bindings will be stored, after being parsed, in the corresponding linked list

node. Finally, the last binding, for which the corresponding linked list node is closest to the

Linkage Area, will be the one containing the malicious OID length. This will allow us to

overwrite LR once snmpd_poll_request returns, thus gaining control over the execution

(see Figure 41 and Figure 42).

Please note that a successful exploitation would allow to recover the process from the

exploitation attempt. This is important in the context of avionics, as the exploit impact is

essentially similar to an expected execution flow, thus preventing any underlying failure

handling and error propagation mitigations mandatory for IMA systems.

©2022 IOActive, Inc. All Rights Reserved. [45] 4.19.2022

Figure 41. Exploit approach

Figure 42 Gaining code execution via LR control

Although snmpd has been demonstrated to be vulnerable, there is still some work to do in

order to verify whether it matches our requirements for remote exploitation during all phases

of the flight. The first step was to analyze the conditions under which snmpd is launched.

The AFDR-3700’s hm_main contains logic to handle up to six different system modes shown

in Figure 43 (‘Normal’, ‘Dataload’, ‘IBIT’, ‘InvalidStrap’, ‘SwValidate’, and ‘InvalidConfig’).

Obviously, we are interested in any code that is executed under ‘Normal’ (id 0x11) system

mode, which is the regular operational mode for the AFD-3700 DUs.

©2022 IOActive, Inc. All Rights Reserved. [46] 4.19.2022

Figure 43. System modes

Each supported system mode has a table of associated threads that should be created.

init_threads_for_mode receives the current boot mode and proceeds to launch the

required threads:

Figure 44. init_threads_for_mode

For the Normal system mode, we have the following threads:

Figure 45. Normal System Mode Threads

Thread ID 6 corresponds to the snmpd thread:

Figure 46. Thread Structure

init_threads_for_mode dereferences the corresponding thread table for the current

system mode, initializes the list of active threads, and creates them.

©2022 IOActive, Inc. All Rights Reserved. [47] 4.19.2022

Figure 47. Dereferencing thread table

Figure 48. Creating Thread

At this point, we have just confirmed that the hm_main application running under regular

conditions (Normal system mode) launches the vulnerable snmpd daemon.

©2022 IOActive, Inc. All Rights Reserved. [48] 4.19.2022

Figure 49. snmpd Code

©2022 IOActive, Inc. All Rights Reserved. [49] 4.19.2022

As shown in Figure 49, there is no check for either a discrete or a specific condition before

reaching the starting point for our vulnerability, which is the red basic block

(snmp_poll_requests); however, there is still a verification step we have to perform, as

we do not yet know how sockets are handled in the AFD-3700.

AFD-3700 Inter-Partition Communication Mechanisms and Network
Connectivity

The snmpd thread code described above shows a socket API logic that seems pretty similar

to the one implemented in Microsoft Windows systems, even using the same function names,

such as WSAGetLastError, or error codes.

If we pay attention to the VCT file (see Figure 50), we will also find that at line 27 the

NetworkInterface parameter is Winsock2.2, which may initially be surprising.

Figure 50. S1-SL03 VCT File

The explanation behind this move seems to be found in the paper “Commercially available,

DO-178B level a certifiable, hard partitioned, posix compliant real-time operating system and

TCP/UDP compliant ethernet stack software”41 published by LynxWorks and Rockwell Collins

in 2003. This publication provides an interesting glimpse into the requirements of those

Collins avionics products relying on LynxOS-178.

41 https://ur.booksc.eu/book/31018525/f88b3c

©2022 IOActive, Inc. All Rights Reserved. [50] 4.19.2022

Figure 51. Extracted from LynxWorks and Rockwell Collins Avionics Paper42

As it is required to assess the feasibility of the discovered vulnerabilities, the underlying stack

logic has been fully reverse engineered to completely understand and characterize the

configured communication flows between partitions as well as those coming from the

Avionics System LAN.

We now briefly introduce the components involved, then we will fully elaborate their

functionalities and interactions based on the network configuration.

42 https://ur.booksc.eu/book/31018525/f88b3c

©2022 IOActive, Inc. All Rights Reserved. [51] 4.19.2022

• AFDX ASL driver (afdx_asl_drv.obj): Implements the vast majority of the logic

behind the inter-partition communication mechanism and the AFDX network

capabilities.

• PCIE driver (pcie.dldd): Implements the End-System part, providing the low-level

layers to enable the AFD-3700 DUs to communicate with the Avionics System LAN.

• network.cfg: Proprietary binary file; contains the complete configuration AFD-

AFDX_asl_driver.obj and PCIE.dldd rely on to allow/deny communication flows

between the different partitions and with other components in the Avionics System

LAN.

Figure 52 provides a detailed overview of the architecture.

Figure 52. Network and Inter-Partition Communication Architecture

©2022 IOActive, Inc. All Rights Reserved. [52] 4.19.2022

network.cfg Analysis

This file could be parsed based on the reverse engineered logic found in the AFDX and PCIE

drivers. This configuration file provides the deterministic rules to be implemented in the ASL.

At boot, when the AFDX driver’s install entry point is invoked (see Figure 53), it looks for

certain information from the mapped INFO file (/usr/etc/afdx_asl_info_0) which, for

example, includes whether it has to perform some verifications or the path to the network

configuration file (network.cfg). It proceeds to load, parse, and generate the configuration

tables that will be used at runtime.

Figure 53. AFDX ASL Driver - install Entry Point

©2022 IOActive, Inc. All Rights Reserved. [53] 4.19.2022

The first function related to the network configuration is LoadConfigTables that parses a

set of initial table records found in the network.cfg file, looking for the normal_table

record (identified by the 0xFFFF marker, see Figure 54).

Figure 54. Code Searching for normal_table Record

Once the normal table has been found, a normal_features configuration SubEntry is

allocated based on the normal table’s offset to the normal_feature entry in

network.cfg.

Figure 55. normal_features SubEntry

©2022 IOActive, Inc. All Rights Reserved. [54] 4.19.2022

The driver then tries to find the WSA_V0 SubEntry from the previously allocated entries.

Figure 56. Searching for WSA_V0

The information contained into these entries provides LoadAslConfig with a pointer to

CnfgTblOffsets, which contains offsets to the different configuration tables and its number

of entries, as you can in Figure 57.

Figure 57. CnfgTblOffsets

©2022 IOActive, Inc. All Rights Reserved. [55] 4.19.2022

Figure 58. AFDX ASL Driver - LoadAslConfig Function

©2022 IOActive, Inc. All Rights Reserved. [56] 4.19.2022

Figure 59. sckAllocCnfg.bin

Based on this information, we can see in Figure 57 that the first entry, which corresponds to

the SckAllocCnfg table (see Figure 59), is at offset 0xD8 (starting at the

CnfgTblOffsets offset) and it contains 0x10 entries of 8 bytes, one for each supported

VM. The table itself contains the number of sockets a VM is allowed to allocate.

Following this logic, it was possible to identify the tables involved.

Table 3. Identified tables

Table Name Offset Description Enabled

SckAllocCfng 0xD8 Number of allowed sockets TRUE

RxCnfgIndexTbl 0x158 A VM-based index of configured Rx
entries in RxCnfgTbl

TRUE

RxCnfgTbl 0x1D8 Incoming Sockets allowed TRUE

McBufferCnfgTbl 0x418 Multicast Buffer Config TRUE

RxcRbpCnfgTbl 0x420 FALSE

RxcComPortCnfgTbl 0x420 FALSE

TxCnfgIndexTbl 0x420 A VM-based index of configured Tx
entries in TxCnfgTbl

TRUE

TxCnfgTbl 0x4a0 Outgoing Sockets allowed TRUE

TxcRbpCnfgTbl 0x7A0 FALSE

TxcComPortCnfgTbl 0x7A0 FALSE

HostNameCnfgIndexTbl 0x7A0 A VM-based index of configured
Hostname entries in
HostNameCnfgTbl

TRUE

HostNameCnfgTbl 0x7E0 IP And Hostname of expected hosts. TRUE

©2022 IOActive, Inc. All Rights Reserved. [57] 4.19.2022

Table Name Offset Description Enabled

PortNameCnfgIndexTbl 0xDF8 A VM-based index of configured port
name entries in PortNameCnfgTbl

TRUE

PortNameCnfgTbl 0xE38 Port number and Name of the
configured sockets

TRUE

HostCnfgTbl 0x13b8 Default hostnames for each of the
supported VM

TRUE

EdeLocalPtr 0x18B8 FALSE

EdeRemotePtr 0x18B8 FALSE

DCACnfgTbl 0x18B8 FALSE

_653PortCnfgTbl 0x18B8 List of the id for the configured
ARINC653 Q/S ports

TRUE

IvmCnfgTbl 0x1A40 TRUE

_653PortNameCnfgIndexTbl 0x1A4C A VM-based index of configured
ARINC653 Q/S port name entries in
653PortNameCnfg

TRUE

_653PortNameCnfgTb 0x1a8c Name, id and VM associated with the
configured A653 Q/S ports.

TRUE

DeviceNameCnfgTbl 0x1B88 Name of the supported AFDX/PCIE
pseudo-devices

TRUE

AggregatePortCnfgTbl 0x1BC8 FALSE

PogoeGeneralPtrlPtr 0x1BC8 FALSE

PogoeChannelPtr 0x1BC8 FALSE

StreamRBPCnfgTbl 0x1BC8 FALSE

Figure 60. Hostname Table

©2022 IOActive, Inc. All Rights Reserved. [58] 4.19.2022

For the PCIE.dldd driver, the approach was much the same.

Figure 61. PCIE Driver - load_config Function

The configured tables for the PCIE driver are the following:

• in_tx_table

• in_tx_tbl_count

• in_eth_table

• in_eth_table_count

• in_rx_table

• in_rx_tbl_count

• in_ephemeral_table

These tables contain expected tuples of IPs and ports involved in the ASL communications

the End-System expects to see.

Having this information, we now proceed to trace a socket communication to figure out

whether we can claim remote/inter-partition attacks against the snmpd are possible.

Following the Packets

As the previous architecture diagram showed, the entire Socket Abstraction Layer is

implemented over the AFDX’s IOCTL interface. In this way, user-mode applications can

directly talk to the AFDX driver to request operations and receive data.

The entire communication process is transparent for user-mode applications, no matter

whether they are looking to communicate with another VM or a remote device through the

ASL.

©2022 IOActive, Inc. All Rights Reserved. [59] 4.19.2022

Through the use of ‘AFDX logical devices,’ the AFDX and PCIE drivers implement the logic

that handles the socket requests depending on the source and destination of the participants.

Figure 62. AFDX Driver Code

As seen in Figure 62, it first registers a kernel ‘environment variable’ that contains the

required function pointers to register an AFDX logical device.

These function pointers are the following:

Table 4. AFDX_DEVICE_REG_FNTAB

Offset Value

0 NULL

4 afdx_device_register

8 unregister_device

0xC enable_device

0x10 disable_device

0x14 get_device_config

0x18 get_device_test_config

It proceeds to call register_IVM, register_ES (see Figure 66), and

register_Aggregate; however, a logical device will only be successfully registered and

enabled when it is present in the DeviceNameCnfgTbl.

©2022 IOActive, Inc. All Rights Reserved. [60] 4.19.2022

Figure 63. PCIE Driver - register_device Function

Figure 64. PCIE Driver - getDeviceIndex Function

©2022 IOActive, Inc. All Rights Reserved. [61] 4.19.2022

In our current configuration there are only two entries (logical devices) in

DeviceNameCnfgTbl: ‘EPCI’ and ‘IVM’.

Figure 65. DeviceNameCnfgTbl.bin

Thus, register_ES and register_Aggregate will fail as they are trying to register

‘ES_0’ and ‘POGOE_ES_0’, which are not supported in the current configuration.

Figure 66. register_ES

Figure 67. register_Aggregate

©2022 IOActive, Inc. All Rights Reserved. [62] 4.19.2022

On the other hand, as ‘IVM‘ is present in the DeviceNameCnfgTbl configuration,

register_IVM (see Figure 68) will be able to register its logical device, which implements

the ARINC653 Queuing/Sampling ports for inter-VM communication.

Figure 68. register_IVM43

43 Reliable Burst Protocol (RBP) is a proprietary protocol developed by Rockwell Collins with similarities to

TCP. There is almost no public information on RBP. The AFDR-3700 supports this protocol.

https://ieeexplore.ieee.org/document/5655316

©2022 IOActive, Inc. All Rights Reserved. [63] 4.19.2022

The PCIE driver operates in the same way to register its ‘EPCI’ device. It gets the

AFDX_DEVICE_REG_FNTAB pointer and proceeds to register the device with the required

functions to handle those ARINC653 Queuing/Sampling ports that require communication

over the AFDX network (ASL).

Figure 69. PCIE Driver

Finding the Path to snmpd

Both the AFDX and PCIE drivers have the ARINC 653 Queuing/Sampling ports logic

implemented, but as seen in the diagram below, the Socket Abstraction Layer is implemented

on top of this layer in the AFDX driver.

The entire sequence required to reach the snmpd daemon from both inter-partition and the

Avionics System LAN perspective follows.

©2022 IOActive, Inc. All Rights Reserved. [64] 4.19.2022

WSAStartup

As with a Windows process, when any of the AFDR-3700 applications wants to use ‘Winsock

API version 2.2’ it has to first initialize it by calling WSAStartup.

Figure 70. WSAStartup

Here we find the first check, as previously mentioned, WSAStartup checks whether the VM

invoking the function is allowed to even create a socket.

Figure 71. SckAllocCnfg

According to sckAllocCnfg (each entry is 8 bytes) only VM0 (0x29 sockets) and VM1 (2

sockets) will be able to allocate sockets.

Figure 72. sckAllocCnfg.bin

The following functions comprise the AFDX_ASL Winsock2 API (see Figure 73), which are

available through the AFDX’s driver IOCTL entry point.

©2022 IOActive, Inc. All Rights Reserved. [65] 4.19.2022

Figure 73. AFDX_ASL Winsock2 API Functions

Create Socket

After calling WSAStartup, snmpd will try to open a socket at the port 161 to attend SNMP

requests. This ends up invoking WSPSocket (see Figure 74) which checks:

• If the Socket layer has been initialized for the VM

• The kind of socket the application is trying to create (either a UDP or RBP socket)

If everything is fine, it creates the socket, which is added to a global array of sockets.

Figure 74. WSPSocket

©2022 IOActive, Inc. All Rights Reserved. [66] 4.19.2022

Bind Socket

As expected, WSPBind needs to perform several verifications according to the network

configuration tables before letting the application bind a socket.

1. GetCnfgIndx uses the VM ID (0 in this case), looks into RxCnfgIndexTbl, and

checks for the allowed range of entries the VM owns in RxCnfgTbl. In this current

configuration, the operation that VM0 is requesting is checked against the first 0x10

entries. For VM1, the only available entry would be the last one.

Figure 75. Get Configuration Index

2. TestAndClaimConfigIndex will check the requested parameters (IPs, ports) to

verify that specific socket operation matches the entries in corresponding

configuration table (either RxCnfgTable or TxCnfgTable).

3. If all the checks passed, the request will be pushed down to the ARINC653 layer

described previously.

©2022 IOActive, Inc. All Rights Reserved. [67] 4.19.2022

Figure 76. AFDX ASL Driver - WSPBind Function

Recvfrom

snmpd is now ready to receive data from the authorized clients. When recvfrom is invoked,

WSPReceiveCommon will eventually invoke ReadQueuingMessage_WinSock, which will

receive the data from the required logical device as previously mentioned, based on the

653PortCnfgTbl configuration (see Figure 77).

Figure 77. WSPReceiveCommon

Taking into account the previous information, we are now in a position to analyze

RxCnfgTbl in order to discover from where snmpd is reachable.

©2022 IOActive, Inc. All Rights Reserved. [68] 4.19.2022

Figure 78. Rx Configuration Index Table and Rx Configuration Table

According to the Rx configuration tables shown in Figure 78, the vulnerable snmpd can be

reached both from the VM1 and from a remote node through the Avionics System LAN.

1. Inter-Partition

Rule ID: 0x1C

Local IP: 10.128.1.0 (0xA800100)

Local Port: 161/UDP (0xA1)

Local Host: VM0

Remote IP: 10.128.1.1 (0xA800101)

Remote Port: 0x4F0F

Remote Host: VM1

The blue arrow in Figure 78 points to Rule ID 0x30, which is the VM1 rule for the

SNMP inter-partition communication between VM0 and VM1.

This entry basically contains the same parameters seen in VM0’s Rule 0x1C, but in

the opposite direction, as from the VM1 perspective, it is now receiving the response

from the snmpd server in VM0.

2. Remote Node (Avionics System LAN)

Rule ID: 0x1D

Local IP: 10.128.1.0 (0xA800100)

Local Port: 0xA1 (161/UDP) SNMP

Local Host: VM0

Remote IP: 10.129.25.0 (0xA811900)

Remote Port: 20233/UDP

©2022 IOActive, Inc. All Rights Reserved. [69] 4.19.2022

Following the verification process, we find that, as expected, TxCnfgTbl contains the

complementary rules perfectly matching the ones described above.

Figure 79. Tx Configuration Table

The last verification step corresponds to PCIE’s in_rx_table, which is checked by the

EPCI logical device before routing the received message from the ASL.

©2022 IOActive, Inc. All Rights Reserved. [70] 4.19.2022

Figure 80. PCIE Driver - read_message Function

Within in_rx_table is the highlighted entry that matches the incoming snmpd rule we

analyzed in the AFDX configuration tables.

Figure 81. PCIE.dldd in_rx_table

Another important fact the analysis of in_rx_table and in_tx_table revealed is that

there are similar entries for multiple ASL IPs, which denotes snmpd rules are also

implemented for other systems different than the AFD, thus opening the door to explore

additional attack vectors. It is assumed the same vulnerable ‘snmpd’ is used in those

additional LynxOS-178-based systems (See Figure 8).

©2022 IOActive, Inc. All Rights Reserved. [71] 4.19.2022

Attack Vectors for snmpd

We have two attack vectors that can be used to trigger the vulnerability during any phase of

the flight: VM1 and a remote node in the Avionics System LAN (10.129.25.0).

Figure 82. Attack Vectors

1. VM1

The reason for this configured snmpd communication channel between VM0 and VM1 is the

Simple Display Application (SDA, see Figure 83), which runs in VM1 only when a certain

system mode is activated (to perform a data load operation using a USB drive). During

‘Normal’ system mode, VM1 is assigned to a functional application, such as the ATF-3500 or

the FDSA-6500.

This fact is interesting because it leads to a significant logic vulnerability: from a network

configuration perspective the system mode is not taken into account, so actually VM1 can

launch an attack against VM0 regardless of the application running in VM1. As a result, if a

malicious actor compromises the VM1 through methods not covered in this paper, it would be

possible to launch an attack against the VM0 by leveraging a deterministic network rule

intended for a different system mode.

©2022 IOActive, Inc. All Rights Reserved. [72] 4.19.2022

Figure 83. SDA

2. Avionics System LAN: 10.129.25.0 in the ASL

HostNameCnfgTbl can be used to resolve the IP of the potentially offending node

10.129.25.0 (0x0A811900).

Figure 84. Hostname Configuration Table

It turns out the same IP resolves to four different hostnames:

• detail

• environment

• ext_dataload

• summary

This information is quite interesting as the hostname ext_dataload may give some clues.

©2022 IOActive, Inc. All Rights Reserved. [73] 4.19.2022

This same device is also performing TFTP operations (see either rule 0x1A in the

RxCnfgTable or rule 0 in in_rx_table), so it seems reasonable to guess we are talking

about an ‘External Data Loader’, or a Data Loading Avionics Gateway, such as the Collins’

Information Management System (IMS)44.

The IMS may be controlled over a WiFi connection.

Figure 85. Data Loading over WiFi 45

Figure 86. WiFi Enabled for IMS Maintenance Operations46

44 https://fccid.io/AJK8223132/User-Manual/Manual-2621284
45 https://www.youtube.com/watch?v=s20Xjq4HnEQ
46 https://www.youtube.com/watch?v=9vNRoFKcIB0

©2022 IOActive, Inc. All Rights Reserved. [74] 4.19.2022

Figure 86. IMS-6010 Installation Manual47

The installation manual for the IMS-6010 provides a diagram for a typical configuration that also

matches the network traffic flows we just analyzed (see Figure 86.)

It is important to clarify that the IMS is just one of the potential attack vectors, which initially

depends on the ‘on-ground’ discrete. Unfortunately, the exposed materials that enabled this

research are not enough to explore the remaining attack vectors coming from the ASL.

As a result, a generic approach to reach the ASL from either external/adjacent networks or other

compromised components within the network is beyond the scope of this research. The lack of

access to a live target forces us to assume that there is no generic way to accomplish this

required step for the different aircraft potentially affected, so those scenarios should be addressed

on a case-by-case basis.

47 https://fccid.io/AJK8223132/Users-Manual/Manual-2621284

©2022 IOActive, Inc. All Rights Reserved. [75] 4.19.2022

Attacking AFDR-3700 Drivers

We have been describing the functionality implemented by some of the drivers without

assessing the attack vectors they may pose. As we have seen, these drivers may also

expose part of their functionality to user-mode through their IOCTL interfaces.

When analyzing the VCTs, we find that some of these drivers are configured without

restrictive permissions. Thus, without any additional checks in the ‘open’ entry point, any VM

would be able to communicate with the driver.

The following two vulnerabilities are used to illustrate the fact that these drivers are also

prone to the same kind of vulnerabilities usually present in drivers from regular Operating

Systems.

Exploiting the following vulnerabilities may allow an unprivileged VM to execute code with

kernel privileges, thus gaining the ability to compromise the entire LynxOS-178 deployment.

In case of a failed exploitation attempt, the attack will leave the LynxOS-178 kernel in an

unstable state.

PCIE.dldd: RESET_MIB_DATA IOCTL Double Fetch

The driver fails to declare as ‘volatile’ an attacker-controlled variable that is used in a switch

statement. As a result, internally the compiler optimizes the code in such a way that a race

condition is created between 0x21B4 and 0x21C4, that can be leveraged to bypass the

‘jumptable’ index check at 0x21BC (see Figure 87). If the malicious threads in the offending

partition win the race, it will be possible to jump to an arbitrary memory address, thus

potentially executing arbitrary code within the kernel context. It is important to note that

LynxOS-178 implements a deterministic scheduler, which facilitates the exploitation of these

issues.

Figure 87. Race Condition

©2022 IOActive, Inc. All Rights Reserved. [76] 4.19.2022

The permissions applied to the driver’s device (see Figure 88) leaves the attack open for any

VM.

Figure 88. Driver Permissions

©2022 IOActive, Inc. All Rights Reserved. [77] 4.19.2022

MERGE.dldd: Memory Corruption Due to Integer Overflow

This driver implements two different IOCTLs (0x96 and 0x97) to perform a memory copy

operation from driver’s internal structure to user-mode memory and vice versa. While

validating the IOCTL parameters received from user-mode, the driver fails to properly verify

the length, thus leading to a memory corruption scenario that may be potentially leveraged to

escalate privileges (see Figure 89).

Figure 89. Merge.dldd Vulnerabilities

©2022 IOActive, Inc. All Rights Reserved. [78] 4.19.2022

Conclusions

This paper has illustrated how the AFDR-3700 software plays a key role in the proper

functioning of the following critical devices:

• Primary Flight Display (PFD)

• Multi-Function Display (MFD)

It has also elaborated on the fact that the integrity of functional applications that sustain

safety-critical functionality, running under a compromised AFDR-3700, cannot be guaranteed.

Figure 90. Scenario for a Compromised AFDR-3700

This essentially means that a successful attack may enable the attackers to perform the

following actions.

©2022 IOActive, Inc. All Rights Reserved. [79] 4.19.2022

1. Display malicious information to the pilots

This maliciously generated misleading information may include data that does not actually

represent the external conditions nor the internal state under which the aircraft is operating.

Disputed statement 2

Collins Aerospace explicitly communicated to IOActive in a letter dated April 7, 2022

that the ‘defects identified by IOActive cannot be used or manipulated to cause

misleading information to be displayed’, also requesting this statement to be deleted

from the paper, without providing any further information or technical details.

IOActive is not removing this potential attack scenario mainly due to the following

reasons:

1. Among other things, a compromised AFDR-3700 grants the attacker a direct

access to low-level graphic resources and video memory in the DU.

2. To facilitate further investigations on this matter.

If any additional information is received, that clearly demonstrates this initial

assessment is not aligned to a correct technical analysis, IOActive will proceed to delete

this scenario and publicly rectify if required.

©2022 IOActive, Inc. All Rights Reserved. [80] 4.19.2022

2. Perform a destructive attack that prevents pilots from properly using the PFD/MFD

A destructive payload may be triggered at certain times, under specific conditions.

The scenarios where destructive attacks can be performed may vary, depending on whether

the target is a military or a commercial aircraft.

It is worth mentioning that even in a case where the PFD/MFD may be rendered inoperable,

pilots should still be able to rely on the Standby Display, which is intended to operate

independently, in addition to electromechanical instruments.

Figure 91 Standby Display

©2022 IOActive, Inc. All Rights Reserved. [81] 4.19.2022

Potential safety implications

The impact of these post-exploitation scenarios will be amplified if the attacks are carried out

when the weather conditions force the crew to operate the aircraft according to the instrument

flight rules.

As a result, it is IOActive's considered opinion that if the vulnerabilities herein described are

successfully exploited, this situation may cause certain potentially unsafe conditions for the

aircraft, crew, and passengers.

Disputed statement 3

Collins Aerospace explicitly communicated to IOActive in a letter dated April 7,

2022 that “contrary to the finding in your paper, after significant analysis, testing,

and review, Collins has determined that the defects described do not adversely

impact operational safety. Consistent with other aerospace research IOActive has

undertaken, there are mitigations installed elsewhere in the aircraft architecture

that ensure the defects described cannot be activated in a way that would

compromise the safety of the aircraft.”

We appreciate the efforts Collins Aerospace dedicated to properly assess these

issues. However, it is worth clarifying that IOActive has not been provided with

any visibility on these efforts; we know nothing about the methodology, the scope

of the analysis or the implemented techniques. We do not know either, where

those mitigations are implemented, nor the technical details behind them.

We also consider important to note that Collins’ response is also consistent with

previous responses we have received, always pointing to unspecified mitigations,

which have been never fully elaborated. Those mitigations are not mapped to

specific vulnerabilities or attack scenarios, but proposed as a generic, abstract,

concept able to foil any attack. When our previous aerospace research has

covered non-certified airborne software, the mitigations were apparently in the

certified avionics. Now that we are covering certified avionics, the mitigations are

elsewhere.

That said, we have no reasons to not assume that those mitigations are actually

in place, and working as expected. However, any serious security research

initiative requires a healthy dose of questioning vague statements and paradigms,

in order to confront them with reproducible, independently verifiable and

consistent technical details.

If any additional information is received, which clearly demonstrates that our initial

safety assessment is not aligned to a correct technical analysis, IOActive will

proceed to update the paper and publicly rectify if required.

©2022 IOActive, Inc. All Rights Reserved. [82] 4.19.2022

It is not the intention of this research to speculate on complete attack scenarios that may lead

to a successful exploitation nor on the composition of post-exploitation payloads. That

approach would require extensive information on a variety of both airborne and ground

systems as well as technical details of multiple commercial, military, and business aircraft

models. As IOActive does not have access to all of the information required for such

conclusions, the right thing to do would be to refrain from speculating on these potential

scenarios, although we have internally assessed them.

However, it also seems reasonable to raise questions around this situation. In IOActive’s

experience, the responses we receive from the affected entities usually suggest that these

vulnerabilities do not represent an actual risk, due to how the systems are implemented,

allegedly following a multilayered protection design. Although these entities do not provide

further details on those additional security controls, it is usually expected that the “multiple

layers” of defense before reaching the vulnerable component may include physical access

control systems within highly secured facilities such as airports48, as well as non-

certified/COTS software and network devices.

The obvious concern we see is that if it were possible to discover the kind of vulnerabilities,

presented in this document, in safety-critical avionics software that has been certified

according to the highest level of software safety requirements, it would be difficult to assume

any greater reliability in the remaining components of these multilayered systems.

Also, these conclusions do not weigh whether real-world attacks against aviation targets are

a current trend, even in the current geopolitical situation. In general terms, the threats against

safety-critical assets should be evaluated from the perspective that an adversary’s

capabilities remain consistent, but their intentions may change overnight.

It is important to point out that the extent of this research’s conclusions is dictated by its

inherent limitations: despite the evidence pointing toward certain scenarios, we will not claim

what we cannot publicly demonstrate. On the other hand, in response to the questions this

research may generate, we will certainly hope to see technically grounded answers from

those who actually have those capabilities.

Finally, the technical details presented herein should be seen as a way to move past the

point where “unbreakability” is still claimed for certified avionics that sustain safety-critical

operations.

48 Some of the affected aircraft, such as King Air, can be found also in local aerodromes, which are far behind in terms
of physical security compared to commercial airports.

©2022 IOActive, Inc. All Rights Reserved. [83] 4.19.2022

Acknowledgements

We want to thank the following external reviewers, also those who wish to remain

anonymous, for their commitment to disinterestedly review this research, as well as for their

valuable remarks:

• Peter Lemme

Aviation Expert

https://www.linkedin.com/in/satcomguru

• Inbar Raz

Aviation security researcher, VP of Research at Hunters

https://il.linkedin.com/in/inbarraz

• Noam Menscher

Security Researcher, Former Head of Aviation R&D at Argus Cyber Security

https://il.linkedin.com/in/noam-menscher-233a35134

• Eric S. Johnson

Pilot and Adjunct Instructor Computer Science, Florida International University

About Ruben Santamarta

Ruben Santamarta is experienced in network penetration and web application testing, reverse engineering, industrial

control systems, transportation, RF, embedded systems, AMI, vulnerability research, exploit development, and malware

analysis. As a principal consultant at IOActive, Mr. Santamarta performs penetration testing, identifies system

vulnerabilities, and researches cutting-edge technologies. Mr. Santamarta has performed security services and

penetration tests for numerous global organizations and a wide range of financial, technical, and educational

institutions. He has presented at international conferences including Ekoparty and Black Hat USA.

About IOActive

IOActive is a comprehensive, high-end information security services firm with a long and established pedigree in

delivering elite security services to its customers. Our world-renowned consulting and research teams deliver a portfolio

of specialist security services ranging from penetration testing and application code assessment through to

semiconductor reverse engineering. Global 500 companies across every industry continue to trust IOActive with their

most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in Seattle, USA, with global

operations through the Americas, EMEA and Asia Pac regions. Visit https://ioactive.com for more information. Read the

IOActive Labs Research Blog: https://labs.ioactive.com. Follow IOActive on Twitter: https://twitter.com/ioactive.

https://www.linkedin.com/in/satcomguru
https://il.linkedin.com/in/inbarraz
https://il.linkedin.com/in/noam-menscher-233a35134
https://ioactive.com/
https://labs.ioactive.com/
https://twitter.com/ioactive

	Notices
	No Warranties or Representations
	Publicly Available Material
	Fair Use
	Trademarks
	No Endorsement or Commercial Relationship

	Copyright
	Introduction
	Research Context
	Disclosure
	Pro Line Fusion® and the AFD-3700
	Approach
	Attack Surface

	Impact and Safety Implications
	Exposed Files
	Resumes
	FAA’s Advisor Circular 25-11B
	FAA’s Airworthiness Directives

	Potentially Affected Aircraft
	Technical Analysis
	Reverse Engineering Notes

	Attacking a LynxOS-178-based System
	Security Boundaries
	AFDR-3700 Boot Sequence
	AFD-3700 Health Monitor Application: hm_main

	Vulnerable SNMP Daemon in hm_main
	Exploitation
	AFD-3700 Inter-Partition Communication Mechanisms and Network Connectivity
	network.cfg Analysis
	Following the Packets
	Finding the Path to snmpd
	WSAStartup
	Create Socket
	Bind Socket
	Recvfrom

	Attack Vectors for snmpd
	1. VM1
	2. Avionics System LAN: 10.129.25.0 in the ASL

	Attacking AFDR-3700 Drivers
	PCIE.dldd: RESET_MIB_DATA IOCTL Double Fetch
	MERGE.dldd: Memory Corruption Due to Integer Overflow

	Conclusions
	1. Display malicious information to the pilots
	2. Perform a destructive attack that prevents pilots from properly using the PFD/MFD
	Potential safety implications

	Acknowledgements
	Untitled

