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Abstract 

Modern avionic systems are designed according to the Integrated Modular Avionics 

concept. Under this paradigm, safety-certified avionic applications and non-critical airborne 

software share the same computing platform but are running at different partitions. In this 

context the underlying safety-critical certified RTOS provides the logical isolation, which 

should prevent unintended interactions between software with different criticalities. 

This paper provides a comprehensive analysis of the architecture and vulnerabilities found 

on the Adaptive Flight Display component of the Collins Aerospace’s Pro Line Fusion 

solution. This integrated avionics system, deployed both in military and commercial aircraft, 

is certified as DO-178B/C Design Assurance Level A. 

Introduction 

Research Context 

A series of precautions must be considered within the context of a vulnerability disclosure 

that affects the aviation industry, where even a minimal inaccuracy may be used to discredit 

and invalidate the research as a whole. In IOActive’s experience, affected entities in the 

aviation sector tend to maintain an opaque attitude, compared with other industries. 

Therefore, the burden of the proof is almost entirely on the researcher’s side, which poses a 

significant challenge in such a complex field. 

This specific scenario requires not only a comprehensive description, a plausible explanation, 

and a complete technical analysis, but also enough evidence to sustain the conclusions of 

the research. Additionally, it is worth mentioning the inability to physically access neither a 

fully working aircraft nor a simulator to legally test the attacks in a live environment. 

Neither Collins Aerospace nor its customers or partners provided any technical support to 

IOActive: the research has been performed by following a static black-box1 approach, solely 

based on the reverse engineering of the firmware, without having physical access to the 

hardware. 

The main objectives of this research are the following: 

• Demonstrate that the target in scope is actually certified for safety-critical operations 

• Demonstrate that the target, a safety-critical certified avionics component, can be 

compromised, either remotely or via inter-partition attacks, during any phase of flight 

• Demonstrate the potential safety implications derived from a compromised target 

The structure of this paper, as well as its narrative, have been conceived according to these 

objectives. All content in this paper has been included for a reason, even if it appears obvious 

 

 

1 No access to source code, documentation, or resources beyond what it is publicly available. 
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or redundant. The reader should carefully note all the references that can be found 

throughout the document, as they point out external sources that can be used to contrast the 

claims presented herein. Special effort has been put into introducing those concepts for 

which there are no references available, without covering in detail others for which a large 

amount of literature is already available, such as IMA2. 

Disclosure 

IOActive and Collins Aerospace have been coordinating the issues herein described since 

March 2021.  

Several pre-publication versions of this paper were shared with Collins Aerospace. In their 

recent letter dated April 7, 2022 they acknowledge the vulnerabilities (“defects” according to 

their nomenclature) described in this research and will proceed “to make updates which will 

address issues you’ve described as part of our next major release with development starting 

this year. Once changes have been made to the software, verification and certification will be 

required across multiple configurations and platforms”. 

They also asked for deletion of two statements regarding one of the post-exploitation 

scenarios as well as the list of the impacted aircraft. Additionally, their assessment of the 

potential safety implications is not aligned with ours, as they state that ‘defects do not 

adversely impact operational safety’.  

IOActive has highlighted these three disputed statements in the paper, to provide the reader 

a clear view of both Collins Aerospace and IOActive respective positions. 

Disputed statement 1 

Disputed statement 2 

Disputed statement 3 

Pro Line Fusion® and the AFD-3700 

Pro Line Fusion from Collins Aerospace is an integrated avionics suite (see Figure 2).3 4 Its 

architecture is comprised of multiple systems, and it provides safety-critical functionality.  

 

Figure 1. Pro Line Fusion Banner - Collins Aerospace Website 

 

 

2 https://en.wikipedia.org/wiki/Integrated_modular_avionics 
3 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion 
4 Challenger 604 – Pro Line Fusion Tour https://www.youtube.com/watch?v=BbV9iqdfVaM 
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Figure 2. Pro Line Fusion Avionics Suite - Challenger CL604, Bombardier 

In the context of the Pro Line Fusion, the Electronic Flight Instrumentation System (EFIS) 

implements at least three5 model AFD-3700 Display Units (DUs, see Figure 3) that provide 

display and control capabilities for features such as: 

• Synthetic Vision System (SVS)  

• Advanced Terrain Functions (ATF) 

• Traffic Alert Collision Avoidance System (TCAS) 

• Engine Indicating and Crew Alerting System (EICAS) 

• Attitude Heading and Reference System (AHRS) 

• Flight Management System (FMS) 

• Weather Radar System (WXR) 

• File Server Application (FSA) 

• Flight Display System Application (FDSA) 

• Radio Tuning System Application (RTSA) 

It is important to clarify that the extent of these aforementioned applications is not limited to 

the scope of the AFD-3700, but also usually integrate with multiple systems across different 

 

 

5 Two in light helicopters/aircraft. 
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components in the aircraft. For instance, the EICAS functional application in the AFD-3700 

DU may consume data from different sensors and systems. 

 

Figure 3. Display Units (AFD-3700)6 

At the factory, Collins Aerospace loads the DUs with the runtime system AFDR-3700 

(Adaptive Flight Display Runtime), which is certified as DO-178B/C Design Assurance Level 

(DAL) A7. The DAL-A is associated with functions whose anomalous behavior could cause or 

contribute to a catastrophic failure condition for the aircraft. The AFDR-3700 consists of the 

real-time operating system (RTOS), drivers, configuration tables, and applications that enable 

the DU to properly operate as well as to perform field loading operations both via USB and 

wirelessly through an external data loader, such as the IMS.8 Later on, aircraft manufacturers 

can load the DU with the proper functional applications (EICAS, FMS, etc.) and configuration 

tables required for their respective aircraft (see Figure 4 and Figure 5).  

 

 

6 https://support.cessna.com/custconf/pageview?as_id=46540 
7 https://en.wikipedia.org/wiki/DO-178B 
8 https://www.youtube.com/watch?v=s20Xjq4HnEQ 
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Figure 4. AFD-3700 Nameplates 

 

Figure 5. AFD-3700 Components 

As depicted in Figure 5. AFD-3700 Components, the AFDR-3700 manages the AFD 

hardware and software resources, and provides common services that let the functional 

applications run. This essentially means that a compromised AFD-3700 Runtime may directly 

influence the loaded functional applications. 
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The files that enabled this research were retrieved from the publicly accessible Rockwell 

Collins support portal (see Table 1).9 This server exposed unauthenticated downloads, 

including the Black Label (production release) version of the ARINC665-3 Loadable Software 

Parts of AFDR-3700 intended for distribution to King Air10 aircraft. 

Table 1. Exposed files 

File Description 

COL_Application01.001 LynxOS-178 Kernel Downloadable Image (KDI) (AFDR-3700) 

COL_Application01.002 Rockwell Collins AFDR-3700 User Filesystem  

COL_Application01.luh A665-3 Load Upload Header 

COL_Table01.001 Product version and certification  

COL_Table01.002 Product version and certification  

COL_Table01.004 VCT for the following functional applications: EICAS-6000, RTSA-6000, 
and ECDA-6000 

COL_Table01.005 VCT for the following functional application: ATF-3500 

COL_Table01.003-033 AFD Functional Configuration Tables 

COL_Table01.luh A665-3 Load Upload Header 

FILES.lum and LOADS.lum A665-3 LUM files 

COL_Table01.012 (cached) 

IOActive found a version of this file (accessible via Google searches) 
that was different from the file downloaded from the server. The cached 
version is the SL03.vct file for the FDSA-6500 functional application. 

 

 

 

9 https://web.archive.org/web/20210119190712/https://portal.rockwellcollins.com/web/support-self-service/kidde-claim/-

/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet 

_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fs

upport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_ 

INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview 

10 https://en.wikipedia.org/wiki/Beechcraft_Super_King_Air 

https://web.archive.org/web/20210119190712/https:/portal.rockwellcollins.com/web/support-self-service/kidde-claim/-/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fsupport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview
https://web.archive.org/web/20210119190712/https:/portal.rockwellcollins.com/web/support-self-service/kidde-claim/-/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fsupport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview
https://web.archive.org/web/20210119190712/https:/portal.rockwellcollins.com/web/support-self-service/kidde-claim/-/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fsupport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview
https://web.archive.org/web/20210119190712/https:/portal.rockwellcollins.com/web/support-self-service/kidde-claim/-/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fsupport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview
https://web.archive.org/web/20210119190712/https:/portal.rockwellcollins.com/web/support-self-service/kidde-claim/-/document_library/T8Mdho6qCThZ/view/1910640?_com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ_redirect=https%3A%2F%2Fportal.rockwellcollins.com%3A443%2Fweb%2Fsupport-self-service%2Fkidde-claim%3Fp_p_id%3Dcom_liferay_document_library_web_portlet_DLPortlet_INSTANCE_T8Mdho6qCThZ%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview
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File Description 

COL_Table01.003 (cached) 

IOActive found a version of this file (accessible via Google searches) 
that was different from the file downloaded from the server. The cached 
version is the SL02.vct file for the FSA-6000 functional application. 

 

 

An initial analysis of the COL_Application01.001 and COL_Application01.002 files 

revealed an AFDR-3700 version dating back to 2014 with part number 810-0346-001 (see 

Figure 7), which matches the official part number referenced in official documents from 

Collins (see Table 1. Exposed files). 

 

Figure 6. Pro Line Fusion Course for King Air11 

 

 

11 https://portal.rockwellcollins.com/documents/1904088/2147097/SYB5230821913.pdf/ed9d4f14-65f2-764d-78ab-
bd8995b30f61 
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Figure 7. Detail of nameplate.txt and TSO_nameplate.txt (C113a) Files12 Found in 

Col_application01.002 (AFDR-3700 USRFS) 

LynxOS-17813 is a POSIX/ARINC-653 conformant real-time operating system (RTOS) that 

has been granted DO-178B/C DAL-A certification by FAA/EASA regulators for safety-critical 

applications. The origin of the LynxOS-178 is VMOS, an avionics RTOS developed by 

Rockwell Collins.  

The following statement14 is publicly available on the Lynx (manufacturer of LynxOS, which at 

the time was named LynuxWorks) website, showing that LynxOS-178 is used in several other 

components besides the AFD runtime: 

 

Figure 8. LynxOS-178 Running in Additional Components 

Table 2 provides the complete list of the archives that were extracted from the 

‘Col_Application.002’ file system.  

Table 2. Rockwell Collins USRFS files 

 

 

12 
https://rgl.faa.gov/Regulatory_and_Guidance_Library/rgTSO.nsf/0/dd968e96d184041e862579f10070b452/$FILE/TSO-
113a.pdf 
13 https://www.lynx.com/products/lynxos-178-do-178c-certified-posix-rtos 
14 https://www.lynx.com/press-releases/lynxos-178-rtos-deployed-by-rockwell-collins-in-pro-line-fusion-series-of-flight-
deck-systems 
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File Type Description 

SL01.vct LynxOS-178 virtual machine (VM) 
configuration table 

VCT for Simple Display 
Application (SDA) 

SL03.vct LynxOS-178 VM configuration 
table 

VCT for the following functional 
applications: EICAS-6000, RTSA-
6000, and ECDA-6000  

SL04.vct LynxOS-178 VM configuration 
table 

VCT for the following functional 
application: ATF-3500 

nameplate.txt Text file 
Product and certification 
information 

tso_nameplate.txt Text file 
Product and certification 
information 

pcieinfo_default.info LynxOS-178 driver info file Default info file for PCIE driver 

pcieinfo_policing_on_

100MbsFull.info LynxOS-178 driver info file Unused info file for PCIE driver 

pcieinfo_policing_on_

autoneg.info LynxOS-178 driver info file Unused info file for PCIE driver 

afdx_asl_info_0 LynxOS-178 driver info file Default info file for AFDX driver 

afdx_asl_info_default

_0 LynxOS-178 driver info file Default info file for AFDX driver 

network.cfg Proprietary Collins Aerospace file 
Network (Avionics System LAN) 
Configuration file for AFDX and 
PCIE drivers 

norflash.info LynxOS-178 driver info file 
Default info file for NORFLASH 
driver 

iod.info LynxOS-178 driver info file Default info file for IOD driver 

touch.info LynxOS-178 driver info file Default info file for TOUCH driver 

rs422.info LynxOS-178 driver info file Default info file for RS422 driver 

apm_info.info LynxOS-178 driver info file Default info file for APM driver 

rtc.info LynxOS-178 driver info file Default info file for RTC driver 

fat32fs.info LynxOS-178 driver info file Default info file for FAT32FS driver 

usb_20rs.info LynxOS-178 driver info file 
Default info file for USB_20RS 
driver 
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File Type Description 

ge4A.info LynxOS-178 driver info file Default info file for GE4 driver 

ge4B.info LynxOS-178 driver info file Unused info file for GE4 driver 

gecko.info LynxOS-178 driver info file Default info file for GECKO driver 

merge.info LynxOS-178 driver info file Default info file for MERGE driver 

ati_info_0 LynxOS-178 driver info file 
Default info file for ATI_DRVR 
driver 

pdkminfo_afd3700.info LynxOS-178 driver info file Default info file for PDKM driver 

vm0.pct Proprietary Collins Aerospace file VM0 process configuration table  

nand_system.info LynxOS-178 driver info file 
Default info file for 
NAND_FS_DRVR driver 

ONFI_nand_bank{0-

7}.info LynxOS-178 driver info file 
Info files related to 
NAND_FS_DRVR 

drmlite_c1.info LynxOS-178 driver info file Info file related to DRMLITE driver 

drmlite_c4.info LynxOS-178 driver info file Info file related to DRMLITE driver 

drmlite_nodeferred.in

fo LynxOS-178 driver info file Info file related to DRMLITE driver 

drmlite_c5.info LynxOS-178 driver info file Info file related to DRMLITE driver 

drmlite_c3.info LynxOS-178 driver info file Info file related to DRMLITE driver 

drmlite_c2.info LynxOS-178 driver info file Info file related to DRMLITE driver 

app_launcher Proprietary Collins Aerospace 
LynxOS-178 User Binary (XCOFF) 

Collins Aerospace proprietary 
binary that executes the 
application configured in the VCT’s 
PCT file 

mkffs Proprietary Collins Aerospace 
LynxOS-178 User Binary (XCOFF) 

Creates a flash filesystem for the 
VM 

ffsck Proprietary Collins Aerospace 
LynxOS-178 User Binary (XCOFF) 

Validates the VM’s filesystem 

arinc615a Proprietary Collins Aerospace 
LynxOS-178 User Binary (XCOFF) 

ARINC615A data loading 
functionality 

hm_main Proprietary Collins Aerospace 
LynxOS-178 User Binary (XCOFF) 

Mandatory Health Monitoring/main 
application running in the 
privileged VM0 
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File Type Description 

afdx_asl_drvr.obj 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

AFDX Avionics System LAN driver 

pcie.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

Low-level PCIE communication 
driver for End-System 

norflash.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

NORFLASH driver 

iod.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

Flash partitions related driver 

touch.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

Touchscreen UART driver 

rs422.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

RS422 driver 

apm_drvr.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

Aircraft Personality Module driver 

rtc.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

Real-Time Clock driver 

fat32fs.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

Fat32 Filesystem driver 

usb_20rs.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

USB 2.0 driver 

ge4.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

Graphics Engine 4 driver 

gecko.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

Graphics Engine related driver 

merge.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

Resource Manager driver 

ati_drvr.obj 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

ATI RADEON E2400 driver  
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File Type Description 

nand_fs_drvr.dldd 
Proprietary Collins Aerospace 
LynxOS-178 Dynamic Loadable 
Device Driver (XCOFF) 

NAND FS driver 

drmlite.dldd Proprietary Collins Aerospace 
LynxOS-178 User Binary (XCOFF) 

Device Resource Manager 

pdkm.dldd Proprietary Collins Aerospace 
LynxOS-178 User Binary (XCOFF) 

Graphics Engine related driver 

sda Proprietary Collins Aerospace 
LynxOS-178 User Binary (XCOFF) 

SDA (Simple Display App - Field 
Software load/validation) 
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Approach 

The top priority for this research is to ensure the technical accuracy of the claims presented 

herein.  

As a result, IOActive decided that both the firmware and the security issues found would be 

analyzed, documented, and reported solely based on the disassembled code, without relying 

on a decompiler’s output or an emulator. This avoids an additional layer of uncertainty 

derived from the use of a specific tool, which eventually might be called into question by the 

affected entities, as happened previously. This approach also facilitates the independent 

verification and reproduction of the results in a manner consistent with the scientific method. 

This research is based on a static reverse engineering analysis of the exposed files listed in 

Tables 1 and 2, assisted by the information collected from publicly available materials, such 

as technical documents, presentations, maintenance manuals, patents, FAA/EASA 

publications, resumes, and training videos. These sources are referenced throughout the 

document.  

Unfortunately, there is a lack of publicly accessible technical literature comprehensively 

detailing real-world vulnerabilities affecting either safety-critical avionics or more specifically 

Lynx178-OS-based deployments. Thus, IOActive believes it is important to document every 

step of this research as thoroughly as possible, to demonstrate the attack vectors as well as 

to bring some light into this opaque area of risk.  

The AFDR-3700 system has been fully reverse engineered using IDA Pro15, reconstructing 

the deterministic network configuration, execution flows and interactions between their 

different components, identifying the security boundaries, and eventually discovering security 

vulnerabilities that would allow a malicious actor to compromise the AFDR-3700, thus taking 

control of the AFD-3700 DUs and its functional applications. 

This technical document is intended to comprehensively detail these efforts, such that it can 

be used to demonstrate the feasibility, validity, and reproducibility of the identified security 

issues as well as the potential safety impacts.  

 

 

15 IDA Pro - https://hex-rays.com/ida-pro/ 
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Attack Surface 

In the context of an IMA architecture, the focus of this work has been put on finding those 

attack vectors that would enable either remote or inter-partition exploitation of safety-critical 

certified avionics during any phase of a flight. Thus, attack vectors requiring physical access 

through USB or maintenance connectors as well as those depending on an active ‘on-ground’ 

discrete signal (see image below) were excluded from the priorities.  

 

Figure 9. Data Loading Capabilities in Pro Line Fusion Suite 

This means that data loading attacks were not considered (all data loading needs to be 

performed while the aircraft is on ground) despite being an otherwise valid attack vector 

actively evaluated by the aviation industry. The main reason behind this decision is our past 

experience with Boeing 787 research16. IOActive discovered a significant number of issues in 

the ARINC615 and ARINC665 (data loading standards) implementation, but unfortunately, 

the inherent mitigations for this attack surface were used to discredit that research, 

regardless of whether they were applicable. It is also worth noting that one of the main 

 

 

16 https://ioactive.com/arm-ida-and-cross-check-reversing-the-787s-core-network/ 
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arguments employed against that research’s conclusions was that the kind of security issues 

found in non-certified systems would never occur in certified avionics.  

Although this research does not cover the data loading attack surface in detail, analysis of the 

binaries involved17 revealed that the security posture of the data loading logic implemented in 

the AFDR-3700 is not any better: it lacks any kind of cryptographically secure logic to validate 

the integrity and authenticity of the loadable software parts, neither of which are encrypted or 

signed, thus relying on CRC only.  

However, as will be elaborated, the devices and network infrastructure involved in the data 

loading functionalities (including airborne navigation databases) are actually considered as 

part of a plausible attack path. 

This research was not focused on finding as many issues as possible, as it does not provide 

any actual value beyond a certain point. Instead, the priority was to find a minimum set of 

those vulnerabilities and logic issues that allow an attacker to bypass the implemented 

security boundaries in a safety-critical certified avionics product. 

  

 

 

17 ‘sda’, ‘hm_main’ and ‘arinc615a’ 
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Impact and Safety Implications 

The following section elaborates the approach IOActive followed to demonstrate that the 

AFD-3700 is a DAL-A device providing actual safety-critical functionalities. This is an 

important topic in this research, as entities may adduce that the AFD-3700 is certified as a 

DAL-A merely due to a specific customer request, but actually its functionality is not aligned 

with a safety-critical certification.  

 

Figure 10. King Air 250 Specification18 

As illustrated in Figure 11, the AFD-3700 is authorized according to the TSO-C113a19 , the 

FAA’s Technical Standard Order for airborne multipurpose electronic displays intended for 

use as an electronic display in the flight deck. 

 

Figure 11. Detail of the AFD-3700 Nameplate 

 

From the requirements that TSO defines, we can highlight the following: 

 

 

18 http://www.africair.com/wp-content/uploads/2016/03/SD-KA250-Unit-250-to-TBD-2015-Oct.pdf 
19 http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgTSO.nsf/0/dd968e96d184041e862579f10070b452/$FILE/ 
TSO-113a.pdf 
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Figure 12. TSO C113a Requirement Details 

An entity applying for the TSO C113a approval would need to define the Failure Condition 

Classifications as well as the Software Qualification, bearing in mind that both should be 

consistent with each other. Basically, this means that it should not be reasonable to apply for 

a TSO C113a approval by stating that a Primary Flight Display is providing the pilots with 

attitude indication, while its Software Qualification is DO-178B/C DAL-D (a failure will have a 

minor effect on the aircraft, crew, or passengers). 

IOActive does not have access to the Collins safety analysis documents that were shared 

with the FAA as part of their application for the TSO C113a. However, we can use certain 

information to confirm that the Software Qualification for the AFD-3700 is DAL-A, which could 

then be used to infer the Failure Condition Classifications, and vice-versa. 

These are the four elements that we will use to perform this task: 

• Exposed files 

• Resumes (from publicly available websites) 

• FAA’s Advisor Circular 25-11B 

• FAA’s Airworthiness Directives 

Exposed Files 

As illustrated in Figure 7 and Figure 11. Detail of the AFD-3700 Nameplate, the product is 

certified for DO-178B A/D. Now the task is to demonstrate that the DAL-D certification is not 

aligned with the main functionality performed by the AFDR-3700, in order to prove the AFDR-

3700 is actually DAL-A software. 
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Based on the analysis of the exposed files, it is possible to determine that the following 

example applications and file systems20 depend on the integrity of AFDR-3700 to run 

properly. 

Applications: 

• ATF-3500 (Advanced Terrain Functions) 

• EICAS-6000 (Engine Indication Crew Alerting System)  (Figure 14, VCT1648) 

 

Figure 13. EICAS-6000 Showing an Engine Fire Alert21 

• RTSA-6000 (Radio Tuning Software Application) (Figure 14, VCT409) 

• FDSA-6500 (Flight Display System Application) (See Table 1. Exposed files 

COL_Table01.012) 

Airborne Navigation Databases: 

• SVS-RWY (Synthetic Vision System - Airport/Runway) (Figure 15, VCT363) 

• SVS-OBST (Synthetic Vision System - Obstacles) (Figure 15, VCT1265) 

• HRTDB (Terrain Awareness Warning System - High Resolution Terrain Database) 

(Figure 15, VCT1322) 

Filesystems: 

• Onboard Maintenance System Application 

• Onboard Data Loader Application 

 

 

20 The functional applications and file systems depend on the integrity of AFDR-3700, so if it is compromised via a VM0 
exploit as it is herein described, then it would be possible to take control of them. 
21 https://www.youtube.com/watch?v=jwUdYwIyWIw&list=PLMBKNyGwDnjoiGp6R5QxtfR9VCHUPl4X1 
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• Onboard Maintenance System Tables 

• IMA Configuration Index Table (ICIT) 

 

Figure 14. S1-SL03.vct - AFDR-3700 file showing functional applications 
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Figure 15. S1-SL04.vct – Mounted filesystems 
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Resumes 

The following extracts from the publicly available resumes of Collins’ engineers provide a 

clear indication that the EFIS project, and thus the AFDR-3700, in the Pro Line Fusion 

product line is being developed following DAL-A standards (core applications such as EICAS 

or FDSA may be certified as DAL-B or above) 

 

Figure 16. Resume of Engineer #1 

 

Figure 17. Resume of Engineer #2 
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FAA’s Advisor Circular 25-11B 

The FAA’s Advisor Circular 25-11B provides a guidance for design, integration, installation 

approval of electronic flight deck displays22, which will be used to check the consistency 

between the safety assessment required by the Software Failure Conditions and the Software 

Qualification.  

The following examples on the hazard classification level can be linked directly to some of the 

scenarios that can be achieved by compromising the AFDR-3700 (see Figure 90. Scenario 

for a Compromised AFDR-3700) which provide the malicious actor the ability to maliciously 

influence the functional applications (e.g. EICAS and FDSA) that depend on it. At this point 

we should recall that catastrophic failures in the Failure Condition Classifications would 

require a DAL-A Software Qualification to be consistent.  

 

Figure 18. Hazard Classification Level for Display of Misleading Attitude Information 

 

Figure 19. Hazard Classification Level for Display of Misleading Engine Information 

 

 

22 https://www.faa.gov/documentlibrary/media/advisory_circular/ac_25-11b.pdf 
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The following point in the guidance relates to a Windowing architecture. 

 

Figure 20 25-11B guidance 

We can directly match the point above with the resume in Figure 21, where the DS6000 

Window Manager application is developed under the DAL-A standard, meaning that at least 

one of the windows contains DAL-A data. 

 

Figure 21 Resume from Engineer #3 

VAPS XT23 is a safety-critical DO-178B/C DAL-A HMI for avionics systems, which is being 

used as part of the development of functional applications for the Pro Line Fusion DUs.  

 

 

 

 

 

23 https://www.presagis.com/en/product/vaps-xt/ 
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FAA’s Airworthiness Directives 

It was also possible to confirm that the AFD-3700 sustains safety-critical functionality by 

consulting the Airworthiness Directive database published by the FAA: 

1. A potential failure in the ASIC of the AFD-3010 (a previous version of the AFD-3700) 

required the release of an Airworthiness Directive24 (AD) in 2002. 

 

Figure 22. Summary of the AD for the AFD-3010 

2. A potential failure in the FDSA-6500 functional application (One of the applications 

depending on the AFDR-3700, see Table 1. Exposed files) required the release of an 

AD25 from the FAA/EASA in 2019, to address an “unsafe condition.” 

 

Figure 23. Summary of the AD for the FDSA-6500  

 

 

24 https://www.govinfo.gov/app/details/FR-2002-10-16/02-25717/summary 
25 https://www.federalregister.gov/documents/2021/03/25/2021-06156/airworthiness-directives-rockwell-collins-inc-flight-
display-system-application 
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This AD provides a clear description of the safety problem: 

 

Figure 24 Unsafe Condition description 

Obviously, this kind of catastrophic error can only be caused by a failure of a DAL-A 

software, assuming there is no single point of failure in safety-critical avionics.  

Thus, it is reasonable to assume our initial premise of the AFDR-3700 being an actual 

DAL-A sustaining safety-critical functionality is correct, as we have that: 

• The FDSA-6500 is a DAL-A application, managed by a DAL-A Window Manager, 

running in a DAL-A device. 

• The DAL-A FDSA-6500 functional application can only rely on a DAL-A AFDR-3700 

according to the “Rely-Guarantee” model, used in certification of modular systems. 

This means that application X (FDSA-6500) is guaranteed to access the resources 

provided by system Y (in this case the AFDR-3700). This must be true, otherwise it 

could not be certified as application X (DAL-A) would be relying on a system Y that is 

certified using a lower level (such as DAL-D). That situation does not guarantee the 

proper functioning of application X, which breaks the model. 

Also, the AFD-3700 DUs are generally part of the Master Minimum Equipment List (MMEL) of 

a Pro Line Fusion-equipped aircraft. 
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Figure 25 MMEL Textron Aviation Model 30026 

Potentially Affected Aircraft 

Based on reputable publicly available information, the list of those aircraft potentially  

equipped with the impacted version of the Pro Line Fusion suite27 may include, but is not 

limited to: 

• Embraer Legacy 450/50028 (Business) 

• Gulfstream G28029 (Business) 

• Bombardier Global 5000/600030 (Business) 

• Bombardier Challenger 60431 (Business) 

 

 

26 https://fsims.faa.gov/wdocs/mmel/be-300_rev_10.pdf 
27 It does not mean all these aircraft are vulnerable. This requires to be evaluated on a case-by-case basis.  
28 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion/Embraer-Legacy-450-
500 
29 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion/Gulfstream-G280-
With-Pro-Line-Fusion-And-HGS 
30 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion/Pro-Line-Fusion-For-
Bombardier-Global-5000-6000 
31 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Platforms/Bombardier/Challenger-604/Avionics 
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• Beechcraft King Air32 (Military/Business) 

• Cessna Citation CJ1+, CJ2+, and CJ333 (Business) 

• Viking Air CL-125T, CL-41534 (Firefighting) 

• Embraer KC-39035 (Military) 

IOActive selected reputable, published sources for the above information such as 

company websites to compile this list, we recognize not all reputable sources are created 

accurate or remain accurate as time progresses. 

 

 

 

32 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion/Pro-Line-Fusion-
Upgrade-For-Beechcraft-King-Air 
33 https://www.collinsaerospace.com/what-we-do/Business-Aviation/Flight-Deck/Pro-Line-Fusion/Pro-Line-Fusion-
Upgrade-For-Citation-Cj3 
34 https://www.ainonline.com/aviation-news/business-aviation/2019-03-19/viking-launches-avionics-upgrade-its-fire-
bombers 
35 https://www.collinsaerospace.com/-/media/project/collinsaerospace/collinsaerospace-website/product-
assets/marketing/k/kc-390-brochure-0711.pdf?rev=787c1c35ebdd4cbebb2365fdd748b686 

Disputed statement 1 

A pre-publication version of the paper shared with Collins Aerospace contained a 

list of affected aircraft, based on publicly available information.  

Collins Aerospace explicitly communicated to IOActive in a letter dated April 7, 

2022 that: 

• The list was incorrect. 

• A corrected list of the affected aircraft will not be provided as it is not 

necessary to support the research. 

IOActive considers that this information is certainly necessary to support the 

research, as it provides a valuable information about its impact. 

That original list included certain commercial and military Airbus models, which 

have been removed from this current list, according to some consistent information 

received from different sources. 

If any additional information is received, that clearly demonstrates this list is still 

incorrect, IOActive will proceed to update the paper accordingly, also publicly 

rectifying if required. 
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Technical Analysis 

Reverse Engineering Notes 

The KDI (COL_Application01.001)contains a symbol table where each entry is 0x12 

bytes (see Figure 27). The first 8 bytes hold the symbol name followed by its address. If the 

symbol name length is longer than 8 bytes, the first 4 bytes are then NULL and the next 4 

bytes contain an offset into an array of strings where the symbol name can be resolved (see 

Figure 26). 

For the remaining binaries (XCOFF), the symbols and debug information were found in 

VM0’s hm_main as well as in most of the drivers. 

 

Figure 26. Kernel Symbol Table Structure 

 

Figure 27. Detail of Kernel Symbol Table 
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It was possible to infer the PowerPC family through one of the CPU Support Package (CSP) 

functions in the kernel (see Figure 28). 

 

Figure 28. Kernel csp_pre_init Function 

At 0xB0050540 the CPU ID 0x1302 indicates an AMCC PowerPC 440EP. This is also 

corroborated by the register values used during the initialization of the on-chip Ethernet MAC 

controller in the pcie.dldd driver, which corresponds to the PowerPC 4XX family. 
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Attacking a LynxOS-178-based System 

 

Figure 29. LynxOS-178 Description (Extracted from LynxOS-178 documents36 Found at GitHub) 

From a functional and security perspective, a LynxOS-178 target is more similar to any 

modern desktop OS than the usual RTOS found in most Common-Off-The-Shelf (COTS) 

embedded devices (see Figure 29).  

 

Figure 30. LynxOS-178 Architecture (Extracted from Leaked LynxOS-178 Documents36) 

 

 

36 https://github.com/blackqbit/lynxos-178_arm_docs/blob/main/2203-00_los178_ig.pdf 
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It is highly recommended to review the documents referenced in Figure 30 to get a complete 

understanding of the LynxOS-178 environment. At a high level, there are four important 

concepts that need to be briefly introduced to provide the required context: 

1. VCT files 

 

Figure 31. VCT Definition 

It is important to clarify that despite the naming conventions, LynxOS-178 is not a 

hypervisor. The VM concept in this context is similar to the process concept in any 

modern desktop OS: neither memory nor resources are shared between the VMs. 

From now on, the VM term will be used according to the LynxOS-178 specification. 

2. VM0 

VM0 is a unique VM with special privileges. These privileges are similar to the root 

privileges in a UNIX system. For example, VM0 can override protections set in other 

VMs and can reboot the computer. In addition, VM0 monitors the state of the 

processes and threads contained within the other VMs. This is crucial to understand 

the implications of this research because we are exploiting an application running in 

VM0, so a successful attack leads to complete control over the AFD-3700 system, as 

will be elaborated in the coming sections. 

3. Inter-Partition Mechanisms  

As defined by ARINC-653 inter-partition communication (communication between 

VMs) is based on message passing through message ports. These messages are 

exchanged through channels, which are a logical link between a source VM and one 

or more destination VM. In the context of the LynxOS-178, the different VMs can send 

and receive messages through multiple channels via defined access points, called 

ports (queuing or sampling).   

The standard does not define the underlying transport mechanism, so it is transparent 

to the applications, allowing ARINC 653 applications to communicate in the same way 

regardless of whether they run on the same shared computing resource or even 

across an AFDX avionics network. These communication flows are fully deterministic 

and are statically defined as part of the system configuration process. 

The analysis of this implementation (developed by Collins Aerospace), including its 

configuration, has been a core part of this research as it helped to demonstrate the 

plausible attack paths. 
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4. Avionics System LAN 

A Pro Line Fusion-equipped aircraft may be considered an e-Enabled aircraft, thus 

presenting certain functional similarities to other e-Enabled aircraft, such as the 

Boeing 787 or an Airbus A380. In this case, the AFDX network implemented by 

Collins Aerospace is called the ‘Avionics System LAN.’ In this network we can find the 

usual components, such as AFDX switches, data concentrators (IOC) and data 

loaders, as well as the AFD-3700 Dus obviously. 

Security Boundaries 

In order to bypass the security boundaries implemented in the AFDR-3700 we are required to 

uncover vulnerabilities that enable executing arbitrary code in a privileged domain, either 

VM0’s main app or kernel/drivers, coming from a less privileged partition (VM) or even 

remotely, through the Avionics System LAN. 

In general terms, the ability to compromise a non-certified partition running DAL D/E 

applications (i.e. In-Flight Entertainment Systems) should be assumed. For the B/C levels, 

this task may be more difficult as the code requires additional certification requirements. 

AFDR-3700 Boot Sequence 

 

Figure 32. Regular Boot Sequence in AFD-3700 

The boot sequence depicted in Figure 32 may vary according to the boot mode (AFDR-3700 

defines six different boot modes described below) and its corresponding VCT, but the AFDR-

3700 implements a common approach to launch the required VM applications.  

App_launcher is the main binary that runs by default for any VM defined in the VCT file. 

Actually, this binary is in charge of parsing the Collins Aerospace’s Process 

Configuration Table file referenced by PctPathFName (only vm0.pct was present in 

the leaked files) and launching the corresponding application defined in it. This PCT file 

format is not documented, so it is considered a custom part added by Collins Aerospace to 

the VCT logic.  
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Figure 33. S1-SL03.vct 

In Figure 33 at line 42, we can see the reference to the vm0.pct file, which app_launcher 

has to parse in order to know the process that needs to be launched.  
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Figure 34. vm0.pct 

As shown in Figure 34, the vm0.pct file contains the reference to the binary implementing 

the functional application that should be running in that specific VM, in this case hm_main for 

VM0. 

AFD-3700 Health Monitor Application: hm_main 

This is a Collins Aerospace’s application which implements part of the Health Monitoring logic 

mandated by the ARINC 653 standard. In addition, it is the core user-mode application in the 

AFDR-3700 as it initializes, supervises, and controls key functionalities of the DU. Essentially, 

the AFD-3700 cannot run properly without a fully working hm_main application. 

As previously mentioned, the VM0 partition is, by default, a privileged partition within the 

LynxOS-178 architecture. From a security perspective, this has several implications. By 

exploiting the hm_main application, we would gain control over key functionalities that can be 

used to fully compromise the entire LynxOS-178 deployment. For instance, once the ability to 

execute code in hm_main has been achieved, it is possible to directly load an arbitrary driver 

via the dr_install (see Figure 35) syscall, which requires the VM0’s UID. 
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Figure 35. dr_install Partial Implementation  
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Vulnerable SNMP Daemon in hm_main 

With this information in mind, it seems clear that hm_main is a top priority. The initial analysis 

of the binary revealed a snmpd daemon, which was found to be vulnerable (see Figure 36) to 

a previously unknown vulnerability. 

Curiously, this snmpd implementation is based on the code37 provided in “TCP/IP Illustrated 

Volume 2 – the Implementation38.” Although the PowerPC assembly presented herein 

partially matches the original code, some modifications have been added by Collins 

Aerospace developers; for instance, a bounds check in .a1readlen, which receives an 

additional parameter in comparison to the original implementation. Also, the dynamic memory 

allocated for the linked list in the original code has been moved to the stack39 in the hm_main 

implementation. Finally, some fields in the internal structures have been removed. 

This SNMP implementation is prone to, at least40, a stack-based buffer overflow due to a lack 

of bounds checking in the a1readoid function while parsing Object Identifiers (OIDs). 

 

 

37 https://cis.temple.edu/~ingargio/cis307/software/TCPIP-vol2/snmp/ 
38 https://en.wikipedia.org/wiki/TCP/IP_Illustrated 
39 Memory is statically allocated due to LynxOS-178 VMs deterministic constraints 
40 There are additional vulnerable paths that have not been elaborated in this paper. 
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Snmpd invokes snmp_poll_request to receive SNMP requests through 

snmp_sock_recv, which limits the size of the packet to 0x59C bytes (see 0x10012084 in 

Figure 36 and MTU values at Figure 78. Rx Configuration Index Table and Rx Configuration 

Table). The received packet is parsed by snparse and eventually transformed to an internal 

format by sna2b. 

 

Figure 36. Vulnerable hm_main Code Flow 

snparse successfully validates the initial structure of the received SNMP packet, eventually 

reaching the variable bindings part, where it fills a statically allocated doubly-linked list with 

pointers to the bindings, performing this operation until the entire packet is parsed. It is worth 

mentioning that the OID entries within this linked list are not parsed at that point. The number 

of nodes in the linked list is fixed to 20, each of them intended to hold a variable binding entry 

from the SNMP packet, as it is statically initialized in the stack by the link_bindings 

function. 

Sna2b is in charge of transforming those entries into an internal structure. This structure, 

which is allocated in the stack, also holds additional structures, one of which is intended to 
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hold the OID bytes into an array that has a fixed size of 32 * sizeof(short) (0x40 

bytes). 

However, sna2b does not validate the length of the ASN1_OBJID element, which is returned 

by a1readlen (red basic block in Figure 37) before invoking a1readoid, thus passing this 

potentially malicious length as a parameter (see Figure 37). 

 

Figure 37. Code Flow with a1readlen 
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a1readoid then assumes it has to copy the OID bytes from the variable binding entry into 

the fixed OBJID array (0x40 bytes) until it reaches the potentially malicious length (yellow 

basic block in Figure 38). As this length is an attacker-controlled value, as a1readoid will 

corrupt the stack by writing controlled values (OID bytes, see Figure 40. Wireshark Dissection 

of Exploit Packet) out of the bounds of the aforementioned fixed OBJID array (red basic 

blocks in Figure 38), which can be then leveraged to execute arbitrary code. 

 

Figure 38. Vulnerable Code Flow 



 

©2022 IOActive, Inc. All Rights Reserved. [43] 4.19.2022 

We can clearly show the underlying problem if we look at certain original parts from the 

‘TCP/IP illustrated v2’ code in Figure 39. As objidlen is controlled, a1readoid will end up 

corrupting memory in the fixed id array within the objid structure. Although the code in the 

Pro Line fusion snmpd daemon is partially different, the original vulnerability was not spotted 

and survived the certification process. 

 

Figure 39. TCP/IP Illustrated – Original Vulnerable Code 
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Exploitation 

The exploit packet is limited to 0x59C bytes as it has been previously mentioned (see Figure 

40). The stack space allocated for the linked list of bindings is 0xC90 bytes. Although there 

are several options to approach the exploit the most efficient is shown in the following image. 

It is worth mentioning that no compiler-level exploit mitigations were found. 

Each of the nodes in this list is 0xA0 so in order to comply with all the requirements and still 

be able to corrupt the stack to gain code execution, the exploit will contain up to 20 bindings. 

The first 19 bindings will be regular ones, occupying the minimum number of bytes to be 

valid, so we can save space for the payload in the last one, as shown in the image below. 

 

Figure 40. Wireshark Dissection of Exploit Packet 

Each of these bindings will be stored, after being parsed, in the corresponding linked list 

node. Finally, the last binding, for which the corresponding linked list node is closest to the 

Linkage Area, will be the one containing the malicious OID length. This will allow us to 

overwrite LR once snmpd_poll_request returns, thus gaining control over the execution 

(see Figure 41 and Figure 42). 

Please note that a successful exploitation would allow to recover the process from the 

exploitation attempt. This is important in the context of avionics, as the exploit impact is 

essentially similar to an expected execution flow, thus preventing any underlying failure 

handling and error propagation mitigations mandatory for IMA systems. 
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Figure 41. Exploit approach 

 

Figure 42 Gaining code execution via LR control 

Although snmpd has been demonstrated to be vulnerable, there is still some work to do in 

order to verify whether it matches our requirements for remote exploitation during all phases 

of the flight. The first step was to analyze the conditions under which snmpd is launched. 

The AFDR-3700’s hm_main contains logic to handle up to six different system modes shown 

in Figure 43 (‘Normal’, ‘Dataload’, ‘IBIT’, ‘InvalidStrap’, ‘SwValidate’, and ‘InvalidConfig’). 

Obviously, we are interested in any code that is executed under ‘Normal’ (id 0x11) system 

mode, which is the regular operational mode for the AFD-3700 DUs. 
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Figure 43. System modes 

Each supported system mode has a table of associated threads that should be created. 

init_threads_for_mode receives the current boot mode and proceeds to launch the 

required threads: 

 

 

Figure 44. init_threads_for_mode 

For the Normal system mode, we have the following threads: 

 

Figure 45. Normal System Mode Threads 

Thread ID 6 corresponds to the snmpd thread: 

 

Figure 46. Thread Structure 

init_threads_for_mode dereferences the corresponding thread table for the current 

system mode, initializes the list of active threads, and creates them. 
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Figure 47. Dereferencing thread table 

 

Figure 48. Creating Thread 

At this point, we have just confirmed that the hm_main application running under regular 

conditions (Normal system mode) launches the vulnerable snmpd daemon. 
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Figure 49. snmpd Code 



 

©2022 IOActive, Inc. All Rights Reserved. [49] 4.19.2022 

As shown in Figure 49, there is no check for either a discrete or a specific condition before 

reaching the starting point for our vulnerability, which is the red basic block 

(snmp_poll_requests); however, there is still a verification step we have to perform, as 

we do not yet know how sockets are handled in the AFD-3700. 

AFD-3700 Inter-Partition Communication Mechanisms and Network 
Connectivity 

The snmpd thread code described above shows a socket API logic that seems pretty similar 

to the one implemented in Microsoft Windows systems, even using the same function names, 

such as WSAGetLastError, or error codes. 

If we pay attention to the VCT file (see Figure 50), we will also find that at line 27 the 

NetworkInterface parameter is Winsock2.2, which may initially be surprising.  

 

Figure 50. S1-SL03 VCT File 

The explanation behind this move seems to be found in the paper “Commercially available, 

DO-178B level a certifiable, hard partitioned, posix compliant real-time operating system and 

TCP/UDP compliant ethernet stack software”41 published by LynxWorks and Rockwell Collins 

in 2003. This publication provides an interesting glimpse into the requirements of those 

Collins avionics products relying on LynxOS-178.  

 

 

41 https://ur.booksc.eu/book/31018525/f88b3c 



 

©2022 IOActive, Inc. All Rights Reserved. [50] 4.19.2022 

 

 

Figure 51. Extracted from LynxWorks and Rockwell Collins Avionics Paper42 

As it is required to assess the feasibility of the discovered vulnerabilities, the underlying stack 

logic has been fully reverse engineered to completely understand and characterize the 

configured communication flows between partitions as well as those coming from the 

Avionics System LAN. 

We now briefly introduce the components involved, then we will fully elaborate their 

functionalities and interactions based on the network configuration. 

 

 

42 https://ur.booksc.eu/book/31018525/f88b3c 



 

©2022 IOActive, Inc. All Rights Reserved. [51] 4.19.2022 

• AFDX ASL driver (afdx_asl_drv.obj): Implements the vast majority of the logic 

behind the inter-partition communication mechanism and the AFDX network 

capabilities. 

• PCIE driver (pcie.dldd ): Implements the End-System part, providing the low-level 

layers to enable the AFD-3700 DUs to communicate with the Avionics System LAN. 

• network.cfg: Proprietary binary file; contains the complete configuration AFD-

AFDX_asl_driver.obj and PCIE.dldd rely on to allow/deny communication flows 

between the different partitions and with other components in the Avionics System 

LAN. 

Figure 52 provides a detailed overview of the architecture. 

 

Figure 52. Network and Inter-Partition Communication Architecture 
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network.cfg Analysis 

This file could be parsed based on the reverse engineered logic found in the AFDX and PCIE 

drivers. This configuration file provides the deterministic rules to be implemented in the ASL. 

At boot, when the AFDX driver’s install entry point is invoked (see Figure 53), it looks for 

certain information from the mapped INFO file (/usr/etc/afdx_asl_info_0) which, for 

example, includes whether it has to perform some verifications or the path to the network 

configuration file (network.cfg). It proceeds to load, parse, and generate the configuration 

tables that will be used at runtime. 

 

Figure 53. AFDX ASL Driver - install Entry Point 
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The first function related to the network configuration is LoadConfigTables that parses a 

set of initial table records found in the network.cfg file, looking for the normal_table 

record (identified by the 0xFFFF marker, see Figure 54). 

 

Figure 54. Code Searching for normal_table Record 

Once the normal table has been found, a normal_features configuration SubEntry is 

allocated based on the normal table’s offset to the normal_feature entry in 

network.cfg. 

 

Figure 55. normal_features SubEntry 
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The driver then tries to find the WSA_V0 SubEntry from the previously allocated entries. 

 

Figure 56. Searching for WSA_V0 

The information contained into these entries provides LoadAslConfig with a pointer to 

CnfgTblOffsets, which contains offsets to the different configuration tables and its number 

of entries, as you can in Figure 57. 

 

Figure 57. CnfgTblOffsets 
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Figure 58. AFDX ASL Driver - LoadAslConfig Function 
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Figure 59. sckAllocCnfg.bin 

Based on this information, we can see in Figure 57 that the first entry, which corresponds to 

the SckAllocCnfg table (see Figure 59), is at offset 0xD8 (starting at the 

CnfgTblOffsets offset) and it contains 0x10 entries of 8 bytes, one for each supported 

VM. The table itself contains the number of sockets a VM is allowed to allocate. 

Following this logic, it was possible to identify the tables involved. 

Table 3. Identified tables 

Table Name Offset Description Enabled 

SckAllocCfng 0xD8 Number of allowed sockets TRUE 

RxCnfgIndexTbl 0x158 A VM-based index of configured Rx 
entries in RxCnfgTbl  

TRUE 

RxCnfgTbl 0x1D8 Incoming Sockets allowed TRUE 

McBufferCnfgTbl 0x418 Multicast Buffer Config TRUE 

RxcRbpCnfgTbl 0x420  FALSE 

RxcComPortCnfgTbl 0x420  FALSE 

TxCnfgIndexTbl 0x420 A VM-based index of configured Tx 
entries in TxCnfgTbl 

TRUE 

TxCnfgTbl 0x4a0 Outgoing Sockets allowed TRUE 

TxcRbpCnfgTbl 0x7A0  FALSE 

TxcComPortCnfgTbl 0x7A0  FALSE 

HostNameCnfgIndexTbl 0x7A0 A VM-based index of configured 
Hostname entries in 
HostNameCnfgTbl 

TRUE 

HostNameCnfgTbl 0x7E0 IP And Hostname of expected hosts. TRUE 
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Table Name Offset Description Enabled 

PortNameCnfgIndexTbl 0xDF8 A VM-based index of configured port 
name entries in PortNameCnfgTbl 

TRUE 

PortNameCnfgTbl 0xE38 Port number and Name of the 
configured sockets  

TRUE 

HostCnfgTbl 0x13b8 Default hostnames for each of the 
supported VM 

TRUE 

EdeLocalPtr 0x18B8  FALSE 

EdeRemotePtr 0x18B8  FALSE 

DCACnfgTbl 0x18B8  FALSE 

_653PortCnfgTbl 0x18B8 List of the id for the configured 
ARINC653 Q/S ports  

TRUE 

IvmCnfgTbl 0x1A40  TRUE 

_653PortNameCnfgIndexTbl 0x1A4C A VM-based index of configured  
ARINC653 Q/S port name entries in 
653PortNameCnfg 

TRUE 

_653PortNameCnfgTb 0x1a8c Name, id and VM associated with the 
configured A653 Q/S ports. 

TRUE 

DeviceNameCnfgTbl 0x1B88 Name of the supported AFDX/PCIE 
pseudo-devices  

TRUE 

AggregatePortCnfgTbl 0x1BC8  FALSE 

PogoeGeneralPtrlPtr 0x1BC8  FALSE 

PogoeChannelPtr 0x1BC8  FALSE 

StreamRBPCnfgTbl 0x1BC8  FALSE 

 

Figure 60. Hostname Table 
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For the PCIE.dldd driver, the approach was much the same. 

 

Figure 61. PCIE Driver - load_config Function 

The configured tables for the PCIE driver are the following: 

• in_tx_table 

• in_tx_tbl_count 

• in_eth_table 

• in_eth_table_count 

• in_rx_table 

• in_rx_tbl_count 

• in_ephemeral_table 

These tables contain expected tuples of IPs and ports involved in the ASL communications 

the End-System expects to see. 

Having this information, we now proceed to trace a socket communication to figure out 

whether we can claim remote/inter-partition attacks against the snmpd are possible. 

Following the Packets 

As the previous architecture diagram showed, the entire Socket Abstraction Layer is 

implemented over the AFDX’s IOCTL interface. In this way, user-mode applications can 

directly talk to the AFDX driver to request operations and receive data. 

The entire communication process is transparent for user-mode applications, no matter 

whether they are looking to communicate with another VM or a remote device through the 

ASL.  
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Through the use of ‘AFDX logical devices,’ the AFDX and PCIE drivers implement the logic 

that handles the socket requests depending on the source and destination of the participants. 

 

Figure 62. AFDX Driver Code 

As seen in Figure 62, it first registers a kernel ‘environment variable’ that contains the 

required function pointers to register an AFDX logical device. 

These function pointers are the following: 

Table 4. AFDX_DEVICE_REG_FNTAB 

Offset Value 

0 NULL 

4 afdx_device_register 

8 unregister_device 

0xC enable_device 

0x10 disable_device 

0x14 get_device_config 

0x18 get_device_test_config 

 

It proceeds to call register_IVM, register_ES (see Figure 66), and 

register_Aggregate; however, a logical device will only be successfully registered and 

enabled when it is present in the DeviceNameCnfgTbl. 
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Figure 63. PCIE Driver - register_device Function 

 

Figure 64. PCIE Driver - getDeviceIndex Function 
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In our current configuration there are only two entries (logical devices) in 

DeviceNameCnfgTbl: ‘EPCI’ and ‘IVM’. 

 

Figure 65. DeviceNameCnfgTbl.bin 

Thus, register_ES and register_Aggregate will fail as they are trying to register 

‘ES_0’ and ‘POGOE_ES_0’, which are not supported in the current configuration.  

 

Figure 66. register_ES 

 

Figure 67. register_Aggregate 
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On the other hand, as ‘IVM‘ is present in the DeviceNameCnfgTbl configuration, 

register_IVM (see Figure 68) will be able to register its logical device, which implements 

the ARINC653 Queuing/Sampling ports for inter-VM communication. 

 

Figure 68. register_IVM43 

 

 

43 Reliable Burst Protocol (RBP) is a proprietary protocol developed by Rockwell Collins with similarities to 

TCP. There is almost no public information on RBP. The AFDR-3700 supports this protocol. 

https://ieeexplore.ieee.org/document/5655316 
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The PCIE driver operates in the same way to register its ‘EPCI’ device. It gets the 

AFDX_DEVICE_REG_FNTAB pointer and proceeds to register the device with the required 

functions to handle those ARINC653 Queuing/Sampling ports that require communication 

over the AFDX network (ASL). 

 

Figure 69. PCIE Driver 

Finding the Path to snmpd 

Both the AFDX and PCIE drivers have the ARINC 653 Queuing/Sampling ports logic 

implemented, but as seen in the diagram below, the Socket Abstraction Layer is implemented 

on top of this layer in the AFDX driver. 

The entire sequence required to reach the snmpd daemon from both inter-partition and the 

Avionics System LAN perspective follows. 
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WSAStartup 

As with a Windows process, when any of the AFDR-3700 applications wants to use ‘Winsock 

API version 2.2’ it has to first initialize it by calling WSAStartup. 

 

Figure 70. WSAStartup 

Here we find the first check, as previously mentioned, WSAStartup checks whether the VM 

invoking the function is allowed to even create a socket. 

 

Figure 71. SckAllocCnfg 

According to sckAllocCnfg (each entry is 8 bytes) only VM0 (0x29 sockets) and VM1 (2 

sockets) will be able to allocate sockets. 

 

Figure 72. sckAllocCnfg.bin 

The following functions comprise the AFDX_ASL Winsock2 API (see Figure 73), which are 

available through the AFDX’s driver IOCTL entry point. 
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Figure 73. AFDX_ASL Winsock2 API Functions 

Create Socket 

After calling WSAStartup, snmpd will try to open a socket at the port 161 to attend SNMP 

requests. This ends up invoking WSPSocket (see Figure 74) which checks: 

• If the Socket layer has been initialized for the VM 

• The kind of socket the application is trying to create (either a UDP or RBP socket) 

If everything is fine, it creates the socket, which is added to a global array of sockets. 

 

Figure 74. WSPSocket 
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Bind Socket 

As expected, WSPBind needs to perform several verifications according to the network 

configuration tables before letting the application bind a socket.  

1. GetCnfgIndx uses the VM ID (0 in this case), looks into RxCnfgIndexTbl, and 

checks for the allowed range of entries the VM owns in RxCnfgTbl. In this current 

configuration, the operation that VM0 is requesting is checked against the first 0x10 

entries. For VM1, the only available entry would be the last one.  

 

Figure 75. Get Configuration Index 

2. TestAndClaimConfigIndex will check the requested parameters (IPs, ports) to 

verify that specific socket operation matches the entries in corresponding 

configuration table (either RxCnfgTable or TxCnfgTable).  

3. If all the checks passed, the request will be pushed down to the ARINC653 layer 

described previously. 
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Figure 76. AFDX ASL Driver - WSPBind Function 

Recvfrom 

snmpd is now ready to receive data from the authorized clients. When recvfrom is invoked, 

WSPReceiveCommon will eventually invoke ReadQueuingMessage_WinSock, which will 

receive the data from the required logical device as previously mentioned, based on the 

653PortCnfgTbl configuration (see Figure 77). 

 

Figure 77. WSPReceiveCommon 

Taking into account the previous information, we are now in a position to analyze 

RxCnfgTbl in order to discover from where snmpd is reachable. 
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Figure 78. Rx Configuration Index Table and Rx Configuration Table 

According to the Rx configuration tables shown in Figure 78, the vulnerable snmpd can be 

reached both from the VM1 and from a remote node through the Avionics System LAN. 

1. Inter-Partition 

Rule ID: 0x1C  

Local IP: 10.128.1.0 (0xA800100) 

Local Port: 161/UDP (0xA1)  

Local Host: VM0 

Remote IP: 10.128.1.1 (0xA800101)  

Remote Port: 0x4F0F 

Remote Host: VM1 

The blue arrow in Figure 78 points to Rule ID 0x30, which is the VM1 rule for the 

SNMP inter-partition communication between VM0 and VM1.  

This entry basically contains the same parameters seen in VM0’s Rule 0x1C, but in 

the opposite direction, as from the VM1 perspective, it is now receiving the response 

from the snmpd server in VM0. 

2. Remote Node (Avionics System LAN) 

Rule ID: 0x1D 

Local IP: 10.128.1.0 (0xA800100) 

Local Port: 0xA1 (161/UDP) SNMP 

Local Host: VM0 

Remote IP: 10.129.25.0 (0xA811900) 

Remote Port:  20233/UDP 
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Following the verification process, we find that, as expected, TxCnfgTbl contains the 

complementary rules perfectly matching the ones described above. 

 

Figure 79. Tx Configuration Table 

The last verification step corresponds to PCIE’s in_rx_table, which is checked by the 

EPCI logical device before routing the received message from the ASL. 
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Figure 80. PCIE Driver - read_message Function 

Within in_rx_table is the highlighted entry that matches the incoming snmpd rule we 

analyzed in the AFDX configuration tables. 

 

Figure 81. PCIE.dldd in_rx_table  

Another important fact the analysis of in_rx_table and in_tx_table revealed is that 

there are similar entries for multiple ASL IPs, which denotes snmpd rules are also 

implemented for other systems different than the AFD, thus opening the door to explore 

additional attack vectors. It is assumed the same vulnerable ‘snmpd’ is used in those 

additional LynxOS-178-based systems (See Figure 8).  
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Attack Vectors for snmpd 

We have two attack vectors that can be used to trigger the vulnerability during any phase of 

the flight: VM1 and a remote node in the Avionics System LAN (10.129.25.0). 

 

Figure 82. Attack Vectors 

1. VM1 

The reason for this configured snmpd communication channel between VM0 and VM1 is the 

Simple Display Application (SDA, see Figure 83), which runs in VM1 only when a certain 

system mode is activated (to perform a data load operation using a USB drive). During 

‘Normal’ system mode, VM1 is assigned to a functional application, such as the ATF-3500 or 

the FDSA-6500. 

This fact is interesting because it leads to a significant logic vulnerability: from a network 

configuration perspective the system mode is not taken into account, so actually VM1 can 

launch an attack against VM0 regardless of the application running in VM1. As a result, if a 

malicious actor compromises the VM1 through methods not covered in this paper, it would be 

possible to launch an attack against the VM0 by leveraging a deterministic network rule 

intended for a different system mode. 



 

©2022 IOActive, Inc. All Rights Reserved. [72] 4.19.2022 

 

Figure 83. SDA 

2. Avionics System LAN: 10.129.25.0 in the ASL 

HostNameCnfgTbl can be used to resolve the IP of the potentially offending node 

10.129.25.0 (0x0A811900). 

 

Figure 84. Hostname Configuration Table 

It turns out the same IP resolves to four different hostnames: 

• detail 

• environment 

• ext_dataload 

• summary 

This information is quite interesting as the hostname ext_dataload may give some clues. 
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This same device is also performing TFTP operations (see either rule 0x1A in the 

RxCnfgTable or rule 0 in in_rx_table), so it seems reasonable to guess we are talking 

about an ‘External Data Loader’, or a Data Loading Avionics Gateway, such as the Collins’ 

Information Management System (IMS)44.  

The IMS may be controlled over a WiFi connection. 

 

Figure 85. Data Loading over WiFi 45 

 

Figure 86. WiFi Enabled for IMS Maintenance Operations46 

 

 

44 https://fccid.io/AJK8223132/User-Manual/Manual-2621284 
45 https://www.youtube.com/watch?v=s20Xjq4HnEQ 
46 https://www.youtube.com/watch?v=9vNRoFKcIB0 
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Figure 86. IMS-6010 Installation Manual47 

The installation manual for the IMS-6010 provides a diagram for a typical configuration that also 

matches the network traffic flows we just analyzed (see Figure 86.)  

It is important to clarify that the IMS is just one of the potential attack vectors, which initially 

depends on the ‘on-ground’ discrete. Unfortunately, the exposed materials that enabled this 

research are not enough to explore the remaining attack vectors coming from the ASL. 

As a result, a generic approach to reach the ASL from either external/adjacent networks or other 

compromised components within the network is beyond the scope of this research. The lack of 

access to a live target forces us to assume that there is no generic way to accomplish this 

required step for the different aircraft potentially affected, so those scenarios should be addressed 

on a case-by-case basis. 

  

 

 

47 https://fccid.io/AJK8223132/Users-Manual/Manual-2621284 
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Attacking AFDR-3700 Drivers 

We have been describing the functionality implemented by some of the drivers without 

assessing the attack vectors they may pose. As we have seen, these drivers may also 

expose part of their functionality to user-mode through their IOCTL interfaces. 

When analyzing the VCTs, we find that some of these drivers are configured without 

restrictive permissions. Thus, without any additional checks in the ‘open’ entry point, any VM 

would be able to communicate with the driver. 

The following two vulnerabilities are used to illustrate the fact that these drivers are also 

prone to the same kind of vulnerabilities usually present in drivers from regular Operating 

Systems.  

Exploiting the following vulnerabilities may allow an unprivileged VM to execute code with 

kernel privileges, thus gaining the ability to compromise the entire LynxOS-178 deployment.  

In case of a failed exploitation attempt, the attack will leave the LynxOS-178 kernel in an 

unstable state. 

PCIE.dldd: RESET_MIB_DATA IOCTL Double Fetch 

The driver fails to declare as ‘volatile’ an attacker-controlled variable that is used in a switch 

statement. As a result, internally the compiler optimizes the code in such a way that a race 

condition is created between 0x21B4 and 0x21C4, that can be leveraged to bypass the 

‘jumptable’ index check at 0x21BC (see Figure 87). If the malicious threads in the offending 

partition win the race, it will be possible to jump to an arbitrary memory address, thus 

potentially executing arbitrary code within the kernel context. It is important to note that 

LynxOS-178 implements a deterministic scheduler, which facilitates the exploitation of these 

issues.  

 

Figure 87. Race Condition 
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The permissions applied to the driver’s device (see Figure 88) leaves the attack open for any 

VM.  

 

Figure 88. Driver Permissions 
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MERGE.dldd: Memory Corruption Due to Integer Overflow 

This driver implements two different IOCTLs (0x96 and 0x97) to perform a memory copy 

operation from driver’s internal structure to user-mode memory and vice versa. While 

validating the IOCTL parameters received from user-mode, the driver fails to properly verify 

the length, thus leading to a memory corruption scenario that may be potentially leveraged to 

escalate privileges (see Figure 89). 

 

Figure 89. Merge.dldd Vulnerabilities 
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Conclusions 

This paper has illustrated how the AFDR-3700 software plays a key role in the proper 

functioning of the following critical devices: 

• Primary Flight Display (PFD) 

• Multi-Function Display (MFD) 

It has also elaborated on the fact that the integrity of functional applications that sustain 

safety-critical functionality, running under a compromised AFDR-3700, cannot be guaranteed.  

 

Figure 90. Scenario for a Compromised AFDR-3700 

 

This essentially means that a successful attack may enable the attackers to perform the 

following actions. 
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1. Display malicious information to the pilots

This maliciously generated misleading information may include data that does not actually 

represent the external conditions nor the internal state under which the aircraft is operating. 

Disputed statement 2 

Collins Aerospace explicitly communicated to IOActive in a letter dated April 7, 2022 

that the ‘defects identified by IOActive cannot be used or manipulated to cause 

misleading information to be displayed’, also requesting this statement to be deleted 

from the paper, without providing any further information or technical details. 

IOActive is not removing this potential attack scenario mainly due to the following 

reasons: 

1. Among other things, a compromised AFDR-3700 grants the attacker a direct

access to low-level graphic resources and video memory in the DU.

2. To facilitate further investigations on this matter.

If any additional information is received, that clearly demonstrates this initial 

assessment is not aligned to a correct technical analysis, IOActive will proceed to delete 

this scenario and publicly rectify if required. 
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2. Perform a destructive attack that prevents pilots from properly using the PFD/MFD 

 

A destructive payload may be triggered at certain times, under specific conditions. 

The scenarios where destructive attacks can be performed may vary, depending on whether 

the target is a military or a commercial aircraft. 

It is worth mentioning that even in a case where the PFD/MFD may be rendered inoperable, 

pilots should still be able to rely on the Standby Display, which is intended to operate 

independently, in addition to electromechanical instruments. 

 

Figure 91 Standby Display 
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Potential safety implications 

The impact of these post-exploitation scenarios will be amplified if the attacks are carried out 

when the weather conditions force the crew to operate the aircraft according to the instrument 

flight rules. 

As a result, it is IOActive's considered opinion that if the vulnerabilities herein described are 

successfully exploited, this situation may cause certain potentially unsafe conditions for the 

aircraft, crew, and passengers. 

 

Disputed statement 3 

Collins Aerospace explicitly communicated to IOActive in a letter dated April 7, 

2022 that “contrary to the finding in your paper, after significant analysis, testing, 

and review, Collins has determined that the defects described do not adversely 

impact operational safety. Consistent with other aerospace research IOActive has 

undertaken, there are mitigations installed elsewhere in the aircraft architecture 

that ensure the defects described cannot be activated in a way that would 

compromise the safety of the aircraft.” 

We appreciate the efforts Collins Aerospace dedicated to properly assess these 

issues. However, it is worth clarifying that IOActive has not been provided with 

any visibility on these efforts; we know nothing about the methodology, the scope 

of the analysis or the implemented techniques. We do not know either, where 

those mitigations are implemented, nor the technical details behind them.  

We also consider important to note that Collins’ response is also consistent with 

previous responses we have received, always pointing to unspecified mitigations, 

which have been never fully elaborated. Those mitigations are not mapped to 

specific vulnerabilities or attack scenarios, but proposed as a generic, abstract, 

concept able to foil any attack. When our previous aerospace research has 

covered non-certified airborne software, the mitigations were apparently in the 

certified avionics. Now that we are covering certified avionics, the mitigations are 

elsewhere.  

That said, we have no reasons to not assume that those mitigations are actually 

in place, and working as expected. However, any serious security research 

initiative requires a healthy dose of questioning vague statements and paradigms, 

in order to confront them with reproducible, independently verifiable and 

consistent technical details.  

If any additional information is received, which clearly demonstrates that our initial 

safety assessment is not aligned to a correct technical analysis, IOActive will 

proceed to update the paper and publicly rectify if required. 
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It is not the intention of this research to speculate on complete attack scenarios that may lead 

to a successful exploitation nor on the composition of post-exploitation payloads. That 

approach would require extensive information on a variety of both airborne and ground 

systems as well as technical details of multiple commercial, military, and business aircraft 

models. As IOActive does not have access to all of the information required for such 

conclusions, the right thing to do would be to refrain from speculating on these potential 

scenarios, although we have internally assessed them.   

However, it also seems reasonable to raise questions around this situation. In IOActive’s 

experience, the responses we receive from the affected entities usually suggest that these 

vulnerabilities do not represent an actual risk, due to how the systems are implemented, 

allegedly following a multilayered protection design. Although these entities do not provide 

further details on those additional security controls, it is usually expected that the “multiple 

layers” of defense before reaching the vulnerable component may include physical access 

control systems within highly secured facilities such as airports48, as well as non-

certified/COTS software and network devices.  

The obvious concern we see is that if it were possible to discover the kind of vulnerabilities, 

presented in this document, in safety-critical avionics software that has been certified 

according to the highest level of software safety requirements, it would be difficult to assume 

any greater reliability in the remaining components of these multilayered systems.  

Also, these conclusions do not weigh whether real-world attacks against aviation targets are 

a current trend, even in the current geopolitical situation. In general terms, the threats against 

safety-critical assets should be evaluated from the perspective that an adversary’s 

capabilities remain consistent, but their intentions may change overnight. 

It is important to point out that the extent of this research’s conclusions is dictated by its 

inherent limitations: despite the evidence pointing toward certain scenarios, we will not claim 

what we cannot publicly demonstrate. On the other hand, in response to the questions this 

research may generate, we will certainly hope to see technically grounded answers from 

those who actually have those capabilities. 

Finally, the technical details presented herein should be seen as a way to move past the 

point where “unbreakability” is still claimed for certified avionics that sustain safety-critical 

operations.  

 

 

48 Some of the affected aircraft, such as King Air, can be found also in local aerodromes, which are far behind in terms 
of physical security compared to commercial airports. 
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