

Confidential. Proprietary. [1]

IOActive Security Advisory

Title Mach Exception Handling Privilege Escalation

Severity Medium

Date Discovered January 5, 2010

Discovered by Richard van Eeden

Affected Products
Apple Mac OS X 10.5.x and 10.6

Impact
Local users can execute arbitrary code with root privileges.

Technical Details
Mach exception handling suffers from a vulnerability that allows an attacker to gain access
to the memory of a suid process (set user identifer). Due to a vulnerability that's similar to
CVE-2006-4392 (found by Dino Dai Zovi of Matasano Security), it’s possible for a suid
process to inherit the Mach exception ports of the parent.

The catch_exception_raise, catch_exception_raise_state, and
catch_exception_raise_state_identity callbacks have send rights to the thread that
generated the exception, which means that a lesser privileged process will be able to modify the
task’s address space once an exception occurs. The code that is responsible for resetting the Mach
exceptions ports can be bypassed by executing the suid binary in a vfork(), as shown in the
following code sample:

File: sys/bsd/kern/kern_exec.c

2745 static int
2746 exec_handle_sugid(struct image_params *imgp)

[…]

2855 /*
2856 * Have mach reset the task and thread
ports.
2857 * We don't want anyone who had the ports
before
2858 * a setuid exec to be able to
access/control the
2859 * task/thread after.

Confidential. Proprietary. [2]

2860 */
2861 if (current_task() == p->task) {
2862 ipc_task_reset(p->task);
2863 ipc_thread_reset(current_thread());
2864 }
2865

Proof of Concept
IOActive has developed a proof of concept that gains root privileges on Mac OS. In order to
exploit this vulnerability an attacker has to:

1. Install an exception handler using task_set_exception_ports().

2. Execute a suid binary in a vfork() with the RLIMIT_STACK rlimit set to a small
value, which forces a crash.

3. Write the shellcode to the suid process using vm_allocate and vm_write.

4. Set the program counter of the thread with thread_set_state() to the shellcode
location.

[richard@research ~]# ./golden_delicious

[!] Executing "/sbin/ping" ...

sh-3.2# id

uid=0(root) gid=0(wheel) groups=0(wheel)

sh-3.2#

