
© 2017 IOActive, Inc. All Rights Reserved [1]

IOActive Security Advisory

Title Ninebot by Segway miniPRO Vulnerabilities

Severity Critical

Discovered by Thomas Kilbride
James Thomas and Stefan Boesen

Advisory Date July 19, 2017

Affected Products
Ninebot by Segway miniPRO hands-free, two-wheel electric scooter

Impact
A malicious attacker could potentially perform one or more of the following behaviors:

• Malicious firmware updates

• Remote code execution/control

• Device tracking and theft of self-balancing vehicles with the potential to circumvent
critical safety interlocks

Background
Ninebot Limited, which purchased Segway Inc. in 2015, sells a line of self-balancing
motorized electric scooters used for transportation under 30km/h. Recently, issues
regarding the safety of scooters have surfaced, primarily caused by poor manufacturing
quality or a general lack of safety-centered design. In response to these issues, the Federal
Trade Commission has required that any scooter imported to the US meet baseline safety
requirements set by Underwriters Laboratories (UL). Current regulations require scooters to
meet certain mechanical and electrical specifications with the goal of preventing battery
fires and various mechanical failures; however, there are currently no regulations that
ensure firmware integrity and validation, even though this is also integral to system safety.

Using reverse engineering and forensic techniques, IOActive determined that the Ninebot
by Segway miniPRO had several critical vulnerabilities which were wirelessly exploitable.
These vulnerabilities could be used by an attacker to bypass safety systems designed by
Ninebot.

Technical Details
IOActive performed the following steps to compromise the miniPRO scooter:

1. By intercepting communication between the scooter and mobile application, it was
determined that Personal Identification Number (PIN) authentication was not required
to establish a connection.

© 2017 IOActive, Inc. All Rights Reserved [2]

2. After intercepting the communications, the IOActive researcher reverse-engineered
the scooter’s communications protocol using a Bluetooth sniffer. This is the same
system used for remote control and configuration settings.

3. Using the packet structure, the IOActive researcher was able to reverse engineer the
firmware update mechanism, and discovered that Ninebot did not implement any
integrity checks on firmware images before accepting a firmware update to the
scooter.

4. Upon further investigation of the Ninebot application, IOActive also determined that
riders in the area were indexed using their smartphones’ GPS; therefore, each riders’
location was published and publicly available, which makes weaponization of an
exploit much easier for an attacker.

Proof-of-Concept
1. Using the Ninebot application, an attacker can locate scooter riders nearby.

2. An attacker can then connect to the Ninebot using a modified version of the Nordic
UART application, without being asked for a password.

3. By sending the following payload from the Nordic application, the attacker can
change the Segway Ninebot MiniPro’s PIN to “111111”.

unsigned char payload[13] =

{0x55, 0xAA, 0x08, 0x0A, 0x03, 0x17, 0x31, 0x31, 0x31,
0x31, 0x31, 0x31, 0xAD, 0xFE}; // Set The Scooter Pin to
“111111”

© 2017 IOActive, Inc. All Rights Reserved [3]

Figure 1 - Ninebot miniPRO PIN Theft

4. Using the newly changed PIN, an attacker can launch the Ninebot application and
connect to the scooter. This would lock a normal user out of the Ninebot mobile
application because a new PIN has been set.

5. An attacker can then upload an arbitrary firmware image to the scooter by DNS
spoofing. By changing the A-Record for apptest.ninebot.cn, the attacker can direct
the rider application to download any firmware image.

6. Next, The attacker can use the following process to notify the rider application that
there is a firmware update available:

a. On http://apptest.ninebot.cn, change the
/appversion/appdownload/NinebotMini/version.json file to match the new
firmware version and size. The example below forces the application to
update the control/mainboard firmware image (aka Driver board firmware) to
v1.3.3.7, which is 50212 bytes in size.

“CtrlVersionCode":["1337","50212"]

b. Create a matching directory and file including the malicious firmware
/appversion/appdownload/NinebotMini/v1.3.3.7/Mini_Driver_v1.3.3.7.zip with
the modified update file Mini_Driver_V1.3.3.7.bin compressed inside the
firmware update archive.

7. When launched, the Ninebot application checks to see if the firmware version on the
scooter matches the one downloaded from apptest.ninebot.cn. If there is a later
version available (that is, if the version in the JSON object is newer than the version
currently installed), the app triggers the firmware update process.

http://apptest.ninebot.cn/

© 2017 IOActive, Inc. All Rights Reserved [4]

Analysis of Findings
Even though the Ninebot application prompted a user to enter a PIN when launched, it was
not checked at a lower level before allowing the user to connect. This left the Bluetooth
interface exposed to an attack at the protocol level. Additionally, since this device did not
use Bluetooth encryption, communications could be wirelessly intercepted by an attacker.

Exposed management interfaces should not be available on a production device. An
attacker may leverage an open management interface to execute privileged actions
remotely. Due to the implementation in this scenario, IOActive was able to leverage this
vulnerability and perform a firmware update of the scooter’s control system without
authentication.

Firmware integrity checking is imperative in embedded systems. Unverified or corrupted
firmware images could permanently damage systems and may allow an attacker to cause
unintended behavior. IOActive researchers were able to modify the controller firmware to
remove rider detection, and may have been able to change configuration parameters in
other onboard systems, such as the BMS (Battery Management System) and Bluetooth
module.

Figure 2 - Unencrypted Communications between Scooter and Rider Application

© 2017 IOActive, Inc. All Rights Reserved [5]

Figure 3 - Interception of the Rider Application Setting the Scooter PIN Code to “111111”

Mitigation
IOActive recommended the following mitigation for these vulnerabilities:

• Implement firmware integrity checking

• Use Bluetooth Pre-Shared Key authentication or PIN authentication

• Use strong encryption for wireless communications between the application and
scooter

• Implement a “pairing mode” as the sole mode in which the scooter pairs over
Bluetooth

• Protect rider privacy by not exposing rider location within the Ninebot mobile
application

Fixes
After IOActive disclosed these vulnerabilities to Segway/Ninebot, the company
subsequently reported remediation of the issues IOActive identified as critical.

Timeline
December 2016: IOActive conducts testing on Segway/Ninebot MiniPRO scooter.

December 24, 2016: IOActive contacts Segway/Ninebot via a public email address to
establish a line of communication.

January 4, 2017: Segway/Ninebot responds to IOActive.

© 2017 IOActive, Inc. All Rights Reserved [6]

January 27, 2017: IOActive discloses issues to Segway/Ninebot.

April 2017: Segway/Ninebot releases an updated application (3.20), which
addresses some of IOActive’s findings.

April 17, 2017: Segway/Ninebot informs IOActive that remediation of critical issues is
complete.

July 19, 2017: Findings are published.

	IOActive Security Advisory
	Affected Products
	Impact
	Background
	Technical Details
	Proof-of-Concept
	Analysis of Findings
	Mitigation
	Fixes
	Timeline

