
Windows Memory Forensics and
Direct Kernel Object Manipulation

Jesse Kornblum

2

Outline
•  Introduction
•  The Kernel
•  Direct Kernel Object Manipulation
•  Standard DKOM
•  Devious DKOM
•  Better Magic
•  Relations Between Kernel Objects
•  Questions

Introduction
•  Computer Forensics Research Guru

–  md5deep, hashdeep, fuzzy hashing (ssdeep), foremost, etc
–  AFOSI, DoJ, ManTech

•  Kyrus Technology

3

Introduction
•  Direct Kernel Object Manipulation (DKOM)
•  Powerful technique for p0wning a computer

–  or crashing it
•  Memory forensics should be able help us

–  but can be subverted too
•  But we shall prevail

4

The Kernel
•  The kernel must maintain lots of data

–  Processes
–  Threads
–  File handles
–  Network connections
–  Interrupts
–  Really everything on the system

•  All stored in kernel data structures

5

How it’s Supposed to Work
•  Structures are modified by API functions
•  Several different levels of API functions

–  CreateProcess
–  NtCreateProcess
–  ZwCreateProcess
–  And many more!

•  These functions provide
–  Sanity checking
–  Memory allocation
–  Data initialization

6

Direct Kernel Object Manipulation
•  Modify data structures without using API functions

•  Must be done by code running in ring zero
–  Also called kernel mode
–  But not userland programs

•  Can be done by drivers
–  This is why drivers can cause crashes

•  Code injected into the kernel process

7

The Kernel
•  Lots of lists
•  Linked lists
•  Each item points to the next item in the list

8

The Kernel
•  Doubly linked lists
•  Each item points to the next and previous items in the list

9

How it’s Supposed to Work

10

How it’s Supposed to Work

11

List Head

DKOM Example
•  Unlink a process to hide it
•  Adjust forward and back links to skip an item

12

Standard DKOM

13

List Head

Detecting Standard DKOM
•  High-low analysis

–  Follow process links, record all processes
–  Brute force search for processes

•  Compare the results
•  Any process that shows up in one list but not the other is suspicious

α β γ δ ε ζ η θ κ λ π σ φ ψ
α β γ δ ε ζ η θ κ λ σ φ ψ

14

Devious DKOM
•  How do you do a brute force search?
•  Most modern tools looks for a magic value
•  Magic values may not be required
•  Some can be replaced with arbitrary values

–  System still runs

15

Process Structures
•  Execute Process

structure
–  EPROCESS

•  Consists of several
substructures

•  Lives in pool memory
•  Starts with a

POOL_HEADER
–  You don’t need to

know what this is
–  Contains values set

by kernel
–  But not referenced

while running

16

Image courtesy Flickr user leozaza and licensed under the Creative Commons

Devious DKOM
•  On Windows XP the POOL_HEADER starts with

50 72 6f e3 (“Proã” in ASCII)

•  Can be replaced with, for example
00 00 00 00

17

Devious DKOM Demo

18

•  Using Volatility Framework
–  https://www.volatilesystems.com/default/volatility

•  Not picking on Volatility
–  All existing tools use magic values
–  Best free memory forensics tool

•  Demo…

Detecting Devious DKOM
•  Two approaches

–  Get better magic
–  Detect using something else

19

Better Magic
•  Better Magic Through Fuzzing™

•  Fuzzing means inputting random
data and seeing what happens

•  Use automated tools to only report
the interesting inputs

20

Image courtesy Flickr user LaMenta3 and licensed under the Creative Commons

Better Magic
•  Method by Brendan Dolan-Gavitt et al.
•  Fuzzing to find magic values

–  Fire up virtual machine and start a process
–  Pause VM
–  Change EPROCESS values at random
–  Resume VM
–  Record if change made the process or machine crash
–  Repeat

•  Do mathy stuff to generate rules for which values cannot be
changed without a crash

•  Full citation at the end, http://www.cc.gatech.edu/~brendan/
ccs09_siggen.pdf

21

Better Magic
•  Examples from EPROCESS

•  Pcb.ReadyListHead
–  List Head of threads ready to execute
–  val & 0x80000000 == 0x80000000 AND val % 0x8 == 0

•  Peb
–  Address of Process Environment Block
–  val == 0 OR
–  (val & 0x7ffd0000 == 0x7ffd0000 AND val % 0x1000 == 0)

22

Problems with Better Magic
•  These rules are for 32-bit Windows XP Service Pack 2 only
•  Fuzzing must be repeated for each configuration
•  Rules will be different for each configuration

–  Especially 64-bit systems

23

Detecting Devious DKOM
•  Two approaches

–  Get better magic
–  Detect using something else

24

Kernel Objects
•  Use inherent organization of the kernel
•  The kernel is massive

–  Lots of structures to choose from
•  Particularly focus on the connections between these objects

25

Processes
•  A process is a container

–  Holds threads, handles, DLLs, and many other structures
•  Let’s talk about threads

–  Threads are paths of execution
–  Have a stack
–  Work off common code base
–  Can interact with other threads

•  Every process starts with one thread
–  Can start more threads

•  Could have a process with no threads, but it wouldn’t do anything

26

Threads

27

Process Code Data

Th
re

ad

Threads

28

Process Code Data

Th
re

ad

Th
re

ad

Threads

29

Code Data

Th
re

ad

Code Data

Th
re

ad

Code Data

Th
re

ad

Code Data

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

The Kernel
•  The Kernel is just another process on the system

–  Starts first
–  Gets to talk to the hardware
–  Schedules threads

•  Tells hardware to transfer execution to a thread for a given time
•  When finished, hardware interrupts the thread

–  Allow it to store its data gracefully
•  Return control to kernel

30

The Kernel

31

Image Copyright © 1999 Twentieth Century Fox

Why Manage Thread Scheduling?
•  Some threads are higher priority

–  Video playback
•  Some are lower priority

–  Prefetching content
–  Indexing service

•  Threads can also be interrupted by hardware
–  Key press
–  Network packet received

•  Thread currently executing may not handle the event

32

The Kernel

33

Kernel

Hardware

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

The Kernel

34

Hardware

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Windows Scheduler
•  Structure used by Windows to schedule threads
•  Organized by priority
•  One doubly linked list for each priority level

 Priority Thread Lists

35

Thread

Thread

Thread Thread

Thread

Thread Thread Thread

Thread

31

15

7

0

Windows Scheduler
•  Lists of threads
•  Each points to an ETHREAD
•  Each ETHREAD points to its EPROCESS

36

Thread

Windows Scheduler

37

The Rootkit Paradox
•  Rootkits want to run
•  Rootkits don’t want to be seen

•  But to have the former, they must violate the latter

•  Full paper http://tinyurl.com/rootkitparadox

38

But wait, there’s more!
•  File handles also point to processes
•  Kernel maintains list of handles

39

List Head

But wait, there’s more!
•  Processes point to threads
•  Network connections point to processes
•  And on and on and on…

•  For an attacker to hide, they have to update everything
•  We just have to validate everything

–  Any inconsistency means we win

40

But wait, there’s more!

41

Coming Soon
•  Unfortunately, no tools use either better magic or kernel objects

–  Yet

42

Outline
•  Introduction
•  The Kernel
•  Direct Kernel Object Manipulation
•  Standard DKOM
•  Devious DKOM
•  Better Magic
•  Relations Between Kernel Objects
•  Questions

43

References
•  Brendan Dolan-Gavitt, Abhinav Srivasta, Patrick Traynor, and

Jonathon Giffin, Robust Signatures for Kernel Data Structures.
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), November 2009, http://
www.cc.gatech.edu/~brendan/ccs09_siggen.pdf

•  Jesse Kornblum, Exploiting the Rootkit Paradox with Windows
Memory Analysis, International Journal of Digital Evidence, Fall
2006, http://tinyurl.com/rootkitparadox

44

Questions?

Jesse Kornblum
jesse.kornblum@kyrus-tech.com

45

