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Introduction 
•  Computer Forensics Research Guru 

–  md5deep, hashdeep, fuzzy hashing (ssdeep), foremost, etc 
–  AFOSI, DoJ, ManTech 

•  Kyrus Technology  
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Introduction 
•  Direct Kernel Object Manipulation (DKOM) 
•  Powerful technique for p0wning a computer 

–  or crashing it 
•  Memory forensics should be able help us 

–  but can be subverted too 
•  But we shall prevail 
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The Kernel 
•  The kernel must maintain lots of data 

–  Processes 
–  Threads 
–  File handles 
–  Network connections 
–  Interrupts 
–  Really everything on the system 

•  All stored in kernel data structures 
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How it’s Supposed to Work 
•  Structures are modified by API functions 
•  Several different levels of API functions 

–  CreateProcess 
–  NtCreateProcess 
–  ZwCreateProcess 
–  And many more! 

•  These functions provide 
–  Sanity checking 
–  Memory allocation 
–  Data initialization 
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Direct Kernel Object Manipulation 
•  Modify data structures without using API functions 

•  Must be done by code running in ring zero 
–  Also called kernel mode 
–  But not userland programs 

•  Can be done by drivers 
–  This is why drivers can cause crashes 

•  Code injected into the kernel process 
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The Kernel 
•  Lots of lists 
•  Linked lists 
•  Each item points to the next item in the list 
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The Kernel 
•  Doubly linked lists 
•  Each item points to the next and previous items in the list 
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How it’s Supposed to Work 
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How it’s Supposed to Work 
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DKOM Example 
•  Unlink a process to hide it 
•  Adjust forward and back links to skip an item 
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Standard DKOM 
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Detecting Standard DKOM 
•  High-low analysis 

–  Follow process links, record all processes 
–  Brute force search for processes 

•  Compare the results 
•  Any process that shows up in one list but not the other is suspicious 

α  β  γ  δ  ε  ζ  η  θ  κ  λ  π  σ  φ  ψ 
α  β  γ  δ  ε  ζ  η  θ  κ  λ       σ  φ  ψ 
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Devious DKOM 
•  How do you do a brute force search? 
•  Most modern tools looks for a magic value 
•  Magic values may not be required 
•  Some can be replaced with arbitrary values 

–  System still runs 
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Process Structures 
•  Execute Process 

structure 
–  EPROCESS 

•  Consists of several 
substructures 

•  Lives in pool memory 
•  Starts with a 

POOL_HEADER 
–  You don’t need to 

know what this is 
–  Contains values set 

by kernel 
–  But not referenced 

while running 
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Devious DKOM 
•  On Windows XP the POOL_HEADER starts with 

50 72 6f e3       (“Proã” in ASCII) 

•  Can be replaced with, for example 
00 00 00 00 
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Devious DKOM Demo 
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•  Using Volatility Framework 
–  https://www.volatilesystems.com/default/volatility 

•  Not picking on Volatility 
–  All existing tools use magic values 
–  Best free memory forensics tool 

•  Demo… 



Detecting Devious DKOM 
•  Two approaches 

–  Get better magic 
–  Detect using something else 
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Better Magic 
•  Better Magic Through Fuzzing™ 

•  Fuzzing means inputting random 
data and seeing what happens 

•  Use automated tools to only report 
the interesting inputs 

20 

Image courtesy Flickr user LaMenta3 and licensed under the Creative Commons 



Better Magic 
•  Method by Brendan Dolan-Gavitt et al. 
•  Fuzzing to find magic values 

–  Fire up virtual machine and start a process 
–  Pause VM 
–  Change EPROCESS values at random 
–  Resume VM 
–  Record if change made the process or machine crash 
–  Repeat 

•  Do mathy stuff to generate rules for which values cannot be 
changed without a crash 

•  Full citation at the end, http://www.cc.gatech.edu/~brendan/
ccs09_siggen.pdf 
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Better Magic 
•  Examples from EPROCESS 

•  Pcb.ReadyListHead 
–  List Head of threads ready to execute 
–  val & 0x80000000 == 0x80000000 AND val % 0x8 == 0 

•  Peb 
–  Address of Process Environment Block 
–  val == 0 OR 
–  (val & 0x7ffd0000 == 0x7ffd0000 AND val % 0x1000 == 0) 
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Problems with Better Magic 
•  These rules are for 32-bit Windows XP Service Pack 2 only 
•  Fuzzing must be repeated for each configuration 
•  Rules will be different for each configuration 

–  Especially 64-bit systems 
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Detecting Devious DKOM 
•  Two approaches 

–  Get better magic 
–  Detect using something else 
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Kernel Objects 
•  Use inherent organization of the kernel 
•  The kernel is massive 

–  Lots of structures to choose from 
•  Particularly focus on the connections between these objects 
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Processes 
•  A process is a container 

–  Holds threads, handles, DLLs, and many other structures 
•  Let’s talk about threads 

–  Threads are paths of execution 
–  Have a stack 
–  Work off common code base 
–  Can interact with other threads 

•  Every process starts with one thread 
–  Can start more threads 

•  Could have a process with no threads, but it wouldn’t do anything 
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Threads 
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Threads 
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The Kernel 
•  The Kernel is just another process on the system 

–  Starts first 
–  Gets to talk to the hardware 
–  Schedules threads 

•  Tells hardware to transfer execution to a thread for a given time 
•  When finished, hardware interrupts the thread 

–  Allow it to store its data gracefully 
•  Return control to kernel 
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The Kernel 
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Why Manage Thread Scheduling? 
•  Some threads are higher priority 

–  Video playback 
•  Some are lower priority 

–  Prefetching content 
–  Indexing service 

•  Threads can also be interrupted by hardware 
–  Key press 
–  Network packet received 

•  Thread currently executing may not handle the event 
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The Kernel 
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The Kernel 
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Windows Scheduler 
•  Structure used by Windows to schedule threads 
•  Organized by priority 
•  One doubly linked list for each priority level 

  Priority   Thread Lists 
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Windows Scheduler 
•  Lists of threads 
•  Each points to an ETHREAD 
•  Each ETHREAD points to its EPROCESS 
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Windows Scheduler 
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The Rootkit Paradox 
•  Rootkits want to run 
•  Rootkits don’t want to be seen 

•  But to have the former, they must violate the latter 

•  Full paper http://tinyurl.com/rootkitparadox 
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But wait, there’s more! 
•  File handles also point to processes 
•  Kernel maintains list of handles 
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But wait, there’s more! 
•  Processes point to threads 
•  Network connections point to processes 
•  And on and on and on…  

•  For an attacker to hide, they have to update everything 
•  We just have to validate everything 

–  Any inconsistency means we win 

40 



But wait, there’s more! 
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Coming Soon 
•  Unfortunately, no tools use either better magic or kernel objects 

–  Yet 
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Questions? 

Jesse Kornblum 
jesse.kornblum@kyrus-tech.com 
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