
SCADA And Mobile Security
In The Internet Of Things Era
Alexander Bolshev (dark_k3y) Security Consultant, IOActive

Ivan Yushkevich (Steph) Information Security Auditor, Embedi

Abstract
Two years ago, the authors assessed 20 mobile applications that worked with ICS software
and hardware. At that time, mobile technologies were widespread, but IoT mania was only
beginning. In that paper, the authors stated, “convenience often wins over security. Nowadays,
you can monitor (or even control!) your ICS from a brand-new Android [device].”

Today, the idea of putting logging, monitoring, and even supervisory/control functions
in the cloud is not so farfetched. The purpose of this paper is to discuss how the landscape has
evolved over the past two years and assess the security posture of SCADA systems and mobile
applications in this new IoT era.

2 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

CONTENTS
3
4
4
5
5
6
6
6
6
7
8
8
8
9

12
14
15
17
17

 20
 20
21
22
25

 26
27

 28
30

 31
31
32

Acronyms
Introduction
SCADA And Mobile Applications
Local Applications
Remote Applications
Typical Threats And Attacks
Threat Types
Unauthorized Physical Access To The Device Or “Virtual” access to device data
Communication channel compromise (MiTM)
Application compromise
Attack Types
Directly/indirectly influencing an industrial process or industrial network infrastructure
Compromising a SCADA operator to unwillingly perform a harmful action on the system
Testing Approach
Reviewed Vendors
Analysis Of Findings
M1: Improper Platform Usage
M2: Insecure Data Storage
M3: Insecure Communication
M4: Insecure Authentication
M5: Insufficient Cryptography
M6: Insecure Authorization
M7: Client Code (Lack of) Quality
M8: Code Tampering
M9: Reverse Engineering
M10: Extraneous Functionality
Backend Issues
Remediation and Best Practices
Conclusions
Acknowledgments
About Us
Contacts 33

3© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Acronyms
Acronym Definition
ACL Access Control List
BYOD Bring Your Own Device
DoS Denial of Service
HMI Human Machine Interface
ICS Industrial Control System
IoT Internet of Things
IIoT Industrial IoT
MES Manufacturing Execution System
MiTM Man in The Middle
OPC Open Platform Communications
PLC Programmable Logic Controller

A digital system used for automation of
typically industrial electromechanical
processes

RTU Remote Terminal Unit
SCADA Supervisory Control and Data Acquisition

Systems operating with coded signals over
communication channels to provide control of
remote equipment

SSRF Server Side Request Forgery
XXE XML eXternal Entity

4 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Introduction
Two years ago, we assessed 20 mobile applications that worked with ICS software
and hardware. At that time, mobile technologies were widespread, but Internet of Things (IoT)
mania was only starting. Our research concluded the combination of SCADA systems
and mobile applications had the potential to be a very dangerous and vulnerable cocktail.
In the introduction of our paper, we stated “convenience often wins over security. Nowadays,
you can monitor (or even control!) your ICS from a brand-new Android [device].”

Today, no one is surprised at the appearance of an IIoT. The idea of putting your logging,
monitoring, and even supervisory/control functions in the cloud does not sound as crazy
as it did several years ago. If you look at mobile application offerings today, many more ICS-
related applications are available than two years ago. Previously, we predicted that the “rapidly
growing mobile development environment” would redeem the past sins of SCADA systems.
The purpose of this paper is to understand how the landscape has evolved and assess the
security posture of SCADA systems and mobile applications in this new IIoT era.

SCADA and Mobile Applications
ICS infrastructures are heterogeneous by nature. They include several layers, each of which is
dedicated to specific tasks. Figure 1 illustrates a typical ICS structure.

Remote SCADA client Internet

Local Mobile app

Cloud (s)

Remote
Endpoint (s) DMZ

ERP Routers /
Firewalls

Corporate
network

HMI

MES Routers /
Firewalls

PLCs

SCADA,
OPC

Field divicesPLCs

Industrial bus(es)

Figure 1: Modern ICS infrastructure including mobile apps

Mobile applications reside in several ICS segments and can be grouped into two general
families: Local (control room) and Remote.

5© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Local Applications
Local applications are installed on devices that connect directly to ICS devices in the field or
process layers (over Wi-Fi, Bluetooth, or serial). For example, applications installed on tablets
used by engineers working in a plant to view the current state of processes, even during their
lunch break. Applications on such devices could be used as portable PLC/HMI configurators/
programmers in place of a laptop. Such a solution would be more
convenient to deploy due to the characteristics of the physical environment. We can divide
local applications into the following subtypes:

• PLC configuration — An application for configuring or monitoring ICS devices, including
PLCs, RTUs, industrial gateways, and switches.

• SCADA client — An application that connects to the SCADA server and allows engineers to
view and/or supervise industrial processes.

• Mobile HMI panel — An application that transforms a mobile device into an actual HMI
panel for the ICS device. This subtype is the most interesting (and potentially dangerous)
control room application. Engineers could use pre-designed HMI projects uploaded
using desktop applications or even design and program HMI projects from the devices
themselves. After the project is uploaded and run on the mobile device, it turns the device
into a real HMI panel (and can even fully replace wall-mounted devices that cost several
thousands of dollars). The project connects to the process or field components using
Modbus/TCP, OPC, S7 and other protocols, using Wi-Fi or Bluetooth as a physical medium.

One should note two environmental factors for every control-room application:
• The applications run on devices that reside inside “safe” (at least firewalled and separated

control room networks. Thus, the lack of cryptography, authentication, and authorization
of communication cannot be characterized as a medium or high risk. If devices inside
the process network segment use Modbus/TCP, it is logical to assume that the mobile
application leverages them as well.

• Even partial compromise of devices that reside in such a network segment (e.g., an attacker
is able to execute custom code on the device) could allow attackers to directly/indirectly
influence the industrial process. Thus, any interaction with such applications outside of the
control room’s borders poses a high risk. As a result, devices with such mobile applications
rarely leave the control room or connect to external networks.

Remote Applications
Remote applications allow engineers to connect to ICS servers using remote channels, like
the Internet, VPN-over-Internet, and private cell networks. Typically, they only allow monitoring
of the industrial process; however, several applications allow the user to control/supervise
the process. Applications of this type include remote SCADA clients, MES clients, and remote
alert applications. In comparison to local applications belonging to the control room group,
which usually operate in an isolated environment, remote applications are often installed on
smartphones that use Internet connections or even on personal devices in organizations that
have a BYOD policy. In other words, remote applications are more exposed and face different

6 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

attack types, like MiTM attacks over communication channels, or attacks from another
malicious application that could be installed on the device.

Typical Threats And Attacks
In this section, we discuss the typical threats to this heterogeneous landscape of applications
and how attacks could be conducted. We also map the threats to the application types.

Threat Types
There are three main possible threat types:

Unauthorized physical access to the device or “virtual” access to device data

This could occur in three scenarios:
U1. Device loss. In this case, attackers could gain access to the data in application storageby

attacking the software and/or hardware. This could lead to data leakage. For local (control
room) applications, leaking data could give attackers a more thorough understanding of the
industrial process, ICS infrastructure, network addressing schemes, etc. For remote access
applications, the consequences are much more dangerous: attackers could extract any
authentication data stored on the device and use it to connect to remote SCADA endpoints.

U2. Unlocked device left unattended. Attackers could work in a timeframe of several minutes to
extract or alter configuration/data in the mobile SCADA application.

U3. Unauthorized compromise of data on the partition without proper ACLs in place (for
example, an SD card). If application data is stored on SD cards, attackers could gain access
to or alter such data. Typically, SD cards are either external removable devices, internal
storage partitions with the exFAT filesystem, or other filesystems without proper ACLs.

Communication channel compromise (MiTM)

For remote applications, the confidentiality and integrity of the communication channel to
remote SCADA endpoints is crucial; however, devices often connect to the Internet using non-
secure channels. This creates the following list of threats:
C1. Rogue Wi-Fi or GSM access points
C2. Public access point or network without proper security mechanisms
C3. Private (e.g., corporate or home) network compromise
C4. VPN channel compromise

Any of these threats could allow attackers to sniff, replay, or alter communication data between
the application and remote SCADA endpoint.

7© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Application compromise

Applications themselves could include various vulnerabilities on the:
A1. Server (backend) side
A2. Client side

This could lead to various vulnerabilities. For example, issues on backend services could
include ACL issues/incorrect permission checking, remote code/command execution,
insufficient data validation, or information leakage.

Table 1 summarizes the threat types.

Code Threat Name
U: Unauthorized physical access to the device or “virtual” access to device data
U2 Unlocked device left unattended
U3 Unauthorized compromise of data on the

partition without proper ACLs in place (for
example, an SD card)

C: Communication channel compromise
C1 Rogue Wi-Fi or GSM access points
C2 Public AP or network without proper security

mechanism
C3 Private (e.g., corporate or home) network

compromise
C4 VPN channel compromise
A: Application compromise
A1 Server (backend) side compromise
A2 Client side compromise

Table 1: SCADA mobile client threat list

8 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Attack Types
Based on the threats listed above, attacks targeting mobile SCADA applications can be sorted
into two groups.

Directly/indirectly influencing an industrial process or industrial network
infrastructure

This type of attack could be carried out by sending data that would be carried over to the field
segment devices. Various methods could be used to achieve this, including bypassing ACL/
permissions checks, accessing credentials with the required privileges, or bypassing data
validation.

Such attacks could exploit the following scenarios:
• Acting as a MiTM (C1-4) over an insecure communication channel, an attacker alters

commands from a mobile SCADA application to the remote endpoint, which reaches
the field devices.

• Attackers steal a device (U1) and extract remote SCADA endpoint credentials from it. Using
them, they connect to the SCADA environment and send malicious commands.
Alternatively, the attackers just take photos of the application’s settings (including
credentials) when the device is left unlocked and unattended (U2).

• Engineers unwillingly install a malicious application on their BYOD, which initially
stays dormant to avoid raising any suspicion. Later, the malicious application exploits
vulnerabilities in the victim application to subvert the communication process with
the backend servers or extract valuable data (A2). Another possible case is when SCADA
mobile applications store data on partitions with insufficient permission checking
and the malicious application alters/reads it (U3).

• The backend servers are attacked using approaches from typical web or infrastructure
application penetration testing (e.g., OWASP Top Ten risks) or by reverse-engineering
the protocol between the mobile SCADA application and the remote endpoint. Then,
the attackers leverage the vulnerabilities they have identified (A1) and send data
to the backend servers, which will directly/indirectly influence some parts of industrial
process/infrastructure.

Compromising a SCADA operator to unwillingly perform a harmful action
on the system

The core idea is for the attacker to create environmental circumstances where a SCADA
system operator could make incorrect decisions and trigger alarms or otherwise bring the
system into a halt state. In other words, if attackers subvert the signal channels between the
application and the actual system, they could confuse the SCADA operator about the current
state of the system. This could be achieved by subverting the data going from the system
to the HMI panel or mixing the signals going from the panel to field devices. Based on this
maliciously altered information, SCADA operators could take harmful actions in good faith.

9© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

The following are example attack scenarios:
• Using MiTM (C1-4) over an insecure communication channel, attackers alter the data

going from a SCADA system to a mobile application. This means that operators will see a
completely different system state on their mobile screen.

• Attackers use physical access (U1), malicious applications (U3), or vulnerabilities in
other applications installed onto the same device (A2) to alter the mobile HMI project
database stored on the SD card, exploiting a lack of proper ACLs. This will allow attackers
to completely subvert an operator’s understanding of the system. For example, they could
change displayed data, hide events, or subvert switch controls behavior (e.g., make the
“OFF” switch execute an “ON” state and vice versa). Besides physical compromise and
mobile virus, this also could be achieved using a ZIP traversal vulnerability (described
below).

Testing Approach
Similar to the research we conducted two years ago, our analysis and testing approach was
based on the OWASP Mobile Top 10 2016. Each application was tested using the following
steps:

• Perform analysis and fill out the test checklist
• Perform client and backend fuzzing
• If needed, perform deep analysis with reverse engineering

We did not alter the fuzzing approach since the last iteration of this research. It was discussed
in depth in our previous whitepaper, so its description is omitted for brevity.

We improved our test checklist for this assessment. It includes:
• Application purpose, type, category, and basic information — This field consists of generic

application characteristics, such as name, package name (namespace), vendor details,
Google Play link, purpose, type, and subtype (see section 2).

• Permissions — Required by applications. Determined by analyzing the Android Manifest for
instance.

• Password protection — In the case of unlocked and unattended devices, additional
password protections are very useful and could prevent attackers from gaining any useful
information from the device. Also, the password(s) could be used as a key component for
encrypting application data.

• Application intents, exported providers, broadcast services, etc. — Any external data
command channel that the application exposes increases its attack surface and could be
leveraged by a malicious application. For instance, incorrectly exported content providers
could lead to data leaks or tampering; or SQL injection in broadcast intent could be used by
an attacker to compromise the application’s behavior.

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.slideshare.net/dark_k3y/scada-and-mobile-blackhat-london-mobile-security-summit-2015

10 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

• Native code — The presence of native and unmanaged code could present a large attack
surface and allow attackers to exploit low-level vulnerabilities, such as memory corruptions
and buffer overflows, which are typically mitigated by Java-managed code by design.

• Code obfuscation — Obfuscated code can make reverse engineering and security
assessments of applications much more difficult and time consuming. While it would not
stop attackers, it could greatly slow them down.

• Presence of web-based components — Web-based components in the application’s
interface could expose a very dangerous attack surface, especially in the case where the
attackers find a way to inject custom JS/CSS or HTML code. This can be even worse, as
a WebView with JavaScript enabled can lead to remote code execution on versions of
Android before 4.2.

• Methods of authentication used to communicate with the backend — Correct authentication
between the application and backend is extremely important. A flawed authentication
method could allow attackers to gain unauthorized access to the backend. For instance, if
authentication is only enforced client-side, then attackers can bypass the login form on the
application by communicating directly with the backend.

• Correctness of operations with sessions, cookies, and tokens — Improper session handling
or insecure session generation could allow attackers to impersonate a legitimate operator,
for example, by performing session fixation attacks or brute-forcing the operator
session ID.

• SSL/TLS connection configuration — Incorrect settings when establishing TLS connections
could lead to various MiTM attacks, via downgrade attacks, for instance.

• XML parser configuration — If the application handles XML data, a vulnerable parser or
incorrect XML parser settings could lead to various XXE and SSRF vulnerabilities.

• Backend APIs — Incorrectly implemented backend APIs may expose internal or debug
functionalities to an attacker. Errors in input validations may also be exploited, for example,
to remotely execute code on the backend servers.

• Sensitive data handling — Storing sensitive data, such as credentials, tokens, or keys, on
unsafe storage could provide a significant advantage to attackers.

• HMI project data handling — If the HMI project stores its data with insufficient permissions,
an operator could be misled into taking harmful actions by compromising the HMI project.

• Secure storage — Storing data at rest without enforcing proper cryptographic secrecy and
integrity could allow an attacker to tamper with or read such data.

• Other issues — Any other issue that was discovered during the analysis presented in this
paper.

11© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

In the following table, we correlate the OWASP Top Ten Mobile 2016 issues with possible attack
vectors against SCADA Mobile applications

OWASP ID Description Threats
M1 Improper Platform Usage A2
M2 Insecure Data Storage U1, U3, A2
M3 Insecure Communication C1-4
M4 Insecure Authentication C1-4
M5 Insufficient Cryptography U1-3, C1-4
M6 Insecure Authorization A1, U2
M7 Client Code Quality A1-2, U1-2
M8 Code Tampering U1
M9 Reverse Engineering -
M10 Extraneous Functionality A2

Table 2. Mapping OWASP IDs to threats

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

12 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Reviewed Vendors
Table 3 lists the 34 vendors we analyzed in our research. It includes the vendor name as well
as the server software and type. We randomly selected SCADA application samples from the
Google Play Store. We did, however, favor applications for which we were granted access to
the backend hardware or software, so that a wider attack surface could be tested.
Additionally, we excluded applications whose most recent update was before June 2015,
since they were likely the subject of our previous work. We only retested them if there had
been an update during the subsequent two years.

Vendor Server/Backend/Protocol Type
BACmove BACnet Local
BACmove BACnet Local
Cybrotech CyBro Controllers, Modbus Remote

Riccardo Pretolesi Modbus/TCP Local

Alexander Maier KNX/EIB Devices Remote
ZRA Ellat, SIA Ellat SCADA Remote
Fernhill Software Fernhill SCADA Server Local
IDEA-Teknik Modbus, S7, … Local
HENNEUSE ALAIN Siemens Logo, 1200, … Local
HENNEUSE ALAIN Modbus Local
Schneider Electric SE IGSS SCADA Plants Remote

Andrew L. Modbus Local

ISW Industriesoftware GmbH S7 Local

ICONICS Web Backend Remote

Mita-Teknik Web Backend Remote

Planet Sol3a Systems Modbus Local

Progea Movicon SCADA Server Local

Progea Movicon SCADA Server Remote
mySCADA Technologies Modbus, S7, … Local
Kassl GmbH OPC DA Remote
ASEM S.p.A. ASEM SCADA servers Local
XCV Software Modbus, Omron, S7, … Remote
JC Accounting & Innovative Technologies, Inc Modbus, A-B, S7, … Local

13© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Vendor Server/Backend/Protocol Type

Digital Electronics Corporation Various HMI panels from Pro-Face Local

Prosys OPC Prosys OPC US Server Local
Prumsys Siemens S7 Family Local
Appliworld Modbus/TCP Local
Siemens AG Siemens LOGO Plc Local
Siemens AG Siemens S7 Family Local
Beijer Electronics
Products AB SmartD HMI Device Remote

TeslaSCADA Modbus, S7, ControlLogix, OPC … Local

TeslaSCADA Modbus, S7, ControlLogix, OPC … Local

Neodian Technology Co., LTD Web Backend Local

WHS Web Backend Remote

Table 3. Reviewed vendors

14 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Analysis Of Finding
We identified 147 security issues in the applications and their backends. We classified each
issue according to the OWASP Top Ten Mobile risks and added one additional category for
backend software bugs.

Table 4 presents the distribution of findings across categories. The “Number of Issues” column
reports the number of issues belonging to each category, while the “% of Apps” column reports
how many applications have at least one vulnerability belonging to each category.

OWASP ID OWASP Category/Type Number of Issues % of Apps
M1 Improper Platform Usage 5 6%
M2 Insecure Data Storage 20 47%
M3 Insecure Communication 11 38%
M4 Insecure Authentication 6 18%
M5 Insufficient Cryptography 8 24%
M6 Insecure Authorization 20 59%
M7 Client Code Quality 12 35%
M8 Code Tampering 32 94%
M9 Reverse Engineering 18 53%
M10 Extraneous Functionality 8 24%

Backend Issues 7 12%

Table 4. Vulnerabilities statistics

The following sections provide an overview of each category, along with examples of the most
significant vulnerabilities we identified.

15© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

M1: Improper Platform Usage
This category covers misuse of a platform feature or failure to use platform security controls.

During our research we uncovered several cases of improper platform usage. Four were related
to outdated runtime libraries, and one was related to incorrect intent exporting.

Several applications used an old Xamarin Engine that is subject to a DLL hijack vulnerability.
An attacker with write access to the SD Card could substitute Monodroid engine’s DLLs, as well
as the application’s DLLs, with malicious ones. This would lead to malicious code execution in
the context of the application. This issue was quickly identified when reviewing the device logs
during application startup:

02-22 09:30:22.851 17010 17010 W monodroid: Using override path:
/data/user/0/com.__________/files/.__override__
02-22 09:30:22.851 17010 17010 W monodroid: Using override path:
/storage/emulated/0/Android/data/com._________/files/.__override_

An attacker could inject custom malicious code into one of the application DLL files and
upload it to the SD card folder “/storage/emulated/0/Android/data/com._________ /files/.__
override__”. This could be achieved, for example, by another application, using an external
device, or exploiting a ZIP traversal vulnerability in another app (U2-U3 or A2). A successful
exploitation of the issue is shown below:

Figure 2: Xamarin DLL Hijack Exploitation

This attack fully compromises the application and could be used to pivot the next stage of the
attack against the backend servers or mislead the SCADA operator.

We also identified incorrect exports of intents (data providers) in other applications. In this
case, the vulnerable application sets up a content provider, which is only meant to be used
internally. However, due to an incorrect Android manifest configuration, this provider is
exported without any restrictions. This allows any application running on the same
device to read and modify data in all the databases (which includes project data,
communications data, settings, passwords, etc.).

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
http://seclists.org/fulldisclosure/2015/May/78

16 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

This issue was discovered using the drozer tool:
dz> run app.provider.info -a __________________.scada
Package: __________________.scada
Authority: .service.provider.
Read Permission: null
Write Permission: null
Content Provider: . .provider.
Multiprocess Allowed: False
Grant Uri Permissions: False

This provider allows full access to the following schemas of the internal database:
dz> run app.provider.finduri __________________.scada
Scanning .scada...
content://_________.___.provider.__________________/objects
...
content://_________.___.provider.__________________/servers/
content://_________.___.provider.__________________/screens/
...
content://_________.___.provider.__________________/settings
content://_________.___.provider.__________________/events
content://_________.___.provider.__________________/settings/
content://_________.___.provider.__________________/tags

By default, from Android 4.2 onwards, content-providers are not automatically exported.
However, this application explicitly sets <uses-sdk minSdkVersion=”9”> in its manifest, which
causes export-by-default of all application content providers.

Any other application installed on the same device could read the admin password:
$ content query --uri content://_________.___.provider.
__________________/settings/
Row: 0 startscreen=0, res2=, certificate=*********,
username=User, timeinterval=1000, adminpass=123, res1=1,
userpass=, debug=1, _id=1, orientation=512, adminname=Admin

Also, any other application can modify the server URL to redirect to a malicious server:
$ content query --uri
content:// . .provider. /servers
Row: 0 password=1000, res2=, display=Server, username=Unknown,
mode=5502, url=192.168.1.34, policy=0, res1=0, _id=1, anonymous=1
$ content update --uri content://
_________.___.provider.______/servers --bind url:s:192.168.1.100
--where “display=’Server’”
$ content query --uri
content:// . .provider. /servers
Row: 0 password=1000, res2=, display=Server, username=Unknown,
mode=5502, url=192.168.1.100, policy=0, res1=0, _id=1,
anonymous=1

In general, other applications can access and modify all the data exported by the content
providers (settings, project data, passwords, communication data, events). Similar to the
previous scenario, an attacker can fully compromise the application, target the operator, and
pivot to the backend servers using the credentials.

https://labs.mwrinfosecurity.com/tools/drozer/

17© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

M2: Insecure Data Storage
This covers insecure data storage and unintended data leakage

Around half of the applications we analyzed (47%) were susceptible to Insecure Data Storage
vulnerabilities. All of the affected applications were storing data on an SD card (external) or
on the virtual (emulated) storage partition. As a side effect, these applications inherited the
weaknesses of the filesystems used by these storage devices, as they have no proper ACLs
or permission mechanisms implemented. In other words, if the application has the privileges
to read/write to this device, it has full access to other data stored on the same device by
other applications. Also, SD cards can be removed by a local attacker who can copy the data
without the user’s knowledge if the device is left unattended. The attacker would gain access
to valuable data from the device (credentials, endpoints, HMI projects, logs, etc.) and could use
it to mount further attacks. In addition, the attacker could also use that opportunity to tamper
with the data (e.g., connection strings, HMI projects) to taint the operator’s view of the system
or enable further attacks using other vulnerabilities (see M1 and M7 risks).

The following screenshot shows the official application documentation, which requires the
configuration file to be kept in the device’s local storage.

Figure 3: Documentation of Mandatory Location of Sensitive Files

M3: Insecure Communication
This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext
communication of sensitive assets, etc.

Over one-third of all analyzed applications (38%) do not properly configure or use secure
communications. We did not include applications using Modbus and other ICS-related
protocols in this category, which by design lack communication security: the mobile application
cannot use secure channels if the ICS device does not support encryption. Instead, we focused
on applications that attempt to use secure communication, but fail to do so properly or fail to
prevent unencrypted communication when they are outside of the isolated ICS perimeter. To
be exhaustive, we reviewed direct communications with backend servers as well as any other
communication channel used by the application, such as update mechanisms, telemetry, etc.

The most common issue we identified is related to the lack of TLS certificate validation.
We found that no checks were performed by the applications to ensure that they were
communicating with the genuine backend and not a rogue backend server.

Only 10% of the applications that use encrypted connections securely implement certificate
validation (see Figure 4).

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

18 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Secure Connections

L insecure

L/R secure

R insecure

Figure 4: Security Posture of Communication for L(ocal) and R(emote) SCADA Mobile Applications

Nowadays, mechanisms for certificate validation are part of every modern operating system.
However, applications sometimes implement their own mechanisms (at least five of the
reviewed applications attempted to do so), which can be very complex. Also, certificate data
for pinning is stored in the application’s folder (and could be updated dynamically), creating
additional problems for developers. Such an approach could lead to unintentional mistakes,
therefore, using well-known existing mechanisms is recommended.

Not every application that implements a custom certificate validation does so correctly. For
example, one of the reviewed applications just checked that the certificate’s issuer name was
the same as the application vendor’s name.

If(array[0].getIssuerX500Principal().getName().contains(“*****SCADA”))
return true;

In this case, an attacker could generate his own certificate using the vendor’s name in the
‘Issue’ field and use it to conduct MiTM attacks.

Additional vulnerabilities were related to failing to prevent insecure communication when
outside of the isolated ICS environment. For example, three applications always used cleartext
HTTP to communicate and authenticate with their backend.

1) login?UserName=admin&Password=admin&IsMobile=true
2) ServerSummary?user=demo&pw=demo
3) POST /service/check_username_password/ HTTP/1.1
Content-Length: 29
username=guest&password=guest

If such applications are used outside of their safe perimeter, it will be easy for an attacker to
acquire credentials and use them to establish a connection to the remote endpoints.

We also found cases where attackers could downgrade from secure to insecure connections or
use non-suitable protocols for secure communications, as shown in the examples below.

19© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

One of the applications would fallback from HTTPS to cleartext HTTP when it failed to
establish a secure communication channel (e.g., connection refused or invalid server
certificate):

Figure 5: HTTPS to HTTP Connection Downgrade

Inevitably, such a fallback mechanism can be exploited by an attacker, who could simply block
TLS connections, wait for the application to fallback to cleartext communication, and place
themselves in a MiTM position to eavesdrop and even tamper with the data being transmitted.

Another application used a communication protocol that may not be best suited for the tasks it
was performing. The surveyed application implements an HMI panel, and receives HMI project
data from the desktop development application. Any time a mobile application project needs to
be updated, the mobile application starts an FTP server, and allows the desktop IDE to upload
and download files via an FTP client, as can be seen in Figure 6.

Figure 6: HMI Project Upload Using FTP

The main issue here, apart from the lack of an encryption layer, is that the authentication
credentials for the FTP server were hardcoded in the mobile application’s code and could
not be changed. In other words, anybody on the same network as the mobile device and who
reversed the application’s code and extracted the credentials, could download/upload any data
from the application, which could lead to successful execution of both the attacks described in
section 3.

20 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

M4: Insecure Authentication
This category captures notions of authenticating the end user or bad session management.

About a fifth of the analyzed applications (18%) did not implement proper authentication. The
main issues revolved around:

• Weaknesses in session management (e.g., storing device-specific authentication tokens on
insecure storage)

• Absence of password checking when interacting with the device or server
• Storing passwords on the device using weak algorithms (e.g., using MD5 or even just

base64 encoding)
• Failing to assess the user’s identity for sensitive operation, including allowing anonymous

sensitive requests to the backend when an authentication token would be expected

Another possible fault of insecure authentication lies in multi-user applications. One may
wonder why mobile applications installed on a single-user operating system should implement
multi-user functionality. In fact, HMI panel tablets are sometimes passed from one engineer
to another inside the safe perimeter. Also, tablets can be used as a substitute for a traditional
HMI panel. In this case, some kind of control on users and privileges could be required (e.g.,
a Senior Engineer should have more permissions than a Junior Engineer). We discovered a
couple of applications that implement this approach incorrectly (e.g., allowing unauthorized
users to access HMI schemes they do not own by simply specifying the scheme ID).

M5: Insufficient Cryptography
The code applies cryptography to a sensitive information asset. However, the cryptography is
insufficient in some way.

Almost a quarter of the analyzed applications (24%) used cryptographic primitives incorrectly
or in a weak manner. These applications used incorrect cryptographic approaches, weak
cryptographic schemes, or hardcoded encryption keys.

We identified two applications that not only used a fixed Initialization Vector (IV) for symmetric
encryption, but surprisingly, happened to use the same, pseudo-random hardcoded IV value.
The code handling the IV was the same in both applications, as shown in Figure 7.

Figure 7: IV Handling Code

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

21© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

By searching for this IV using the Google search engine, we were able to find it mentioned in
many code snippets hosted on GitHub, as well as in StackOverflow.com answers (see Figure 8).
The code snippet found on StackOverflow.com was almost identical to the code we extracted
from the applications, which suggests that the developers used it as a reference. This violates
the cryptographic requirement to choose a unique and unpredictable IV value for each
encryption operation under the same key.

Figure 8: StackOverflow Answer Suggesting the Fixed IV

M6: Insecure Authorization
This is a category to capture any failures in authorization (e.g., authorization decisions in the
client side, forced browsing, etc.).

We decided to include the lack of password protection in this category, rather than in “Insecure
Authentication.” In our case, the application password, restricting access to the HMI or the
configuration, is more of a secondary verification of the user’s abilities to use the application,
rather than a system to assess an identity. In the initial state, the application deals with a
partially-trusted user, and the application password is used to verify that the user could indeed
be fully trusted. This also applies to passwords protecting the application’s configuration (e.g.,
users could view system state, but need a password to supervise it).

Absence of password protection may allow attackers with access to unattended, unlocked
devices to read/modify application configuration, leading to several issues, from extending the
attacker’s view on the system to malicious HMI project modification, or even leaking remote
SCADA endpoint credentials. For more information on the topic, please refer to section 3.

Password protection can be used to achieve two goals:
1. Protecting the application’s settings and data at runtime from being exfiltrated or modified
2. Protecting the application’s sensitive data at rest using the password to securely derive an

encryption key

As was mentioned before, if both goals are achieved, it could enable most of the threats from
the U1-3 group.

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

22 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Unfortunately, less than 20% of local applications implement secure authorization correctly.
The most common mistake was the complete lack of passwords to protect the HMI project
and panel data configuration – if a password was requested, it would only be used to protect
the global application configuration. The second most common mistake was the presence of
a “Do not ask for password again” feature, which defeats the purpose of runtime password
protection.

M7: Client Code (Lack of) Quality
This would be the catch-all for code-level implementation problems in the mobile client.

During our analysis, we found multiple problems in client implementations: from DoS due
to incorrect exception handling, to memory corruption vulnerabilities. Many applications
implemented poor exception handling, which resulted in multiple crashes; this affected not only
applications using native code, but also Java- and .Net-based ones. Native code applications
also had various problems related to memory handling, where they failed to sanitize and
prevent arbitrary read access violations (see Figure 9), and were additionally affected by
memory corruption issues.

Figure 9: Access Violation in Application Using Native Code

Focusing on incorrect bounds-checking issues, an interesting case was an application that
exposed a custom native-code HTTP server to all devices residing in the same network
segment. This constitutes a very interesting attack surface for an attacker and a good example
of M3/M6. As it turns out, the custom HTTP server was riddled with security issues, such as
memory corruptions. For instance, simply supplying a very large (or negative) number in the
Content-Length HTTP header caused the server to crash, as shown in Figure 10:

Figure 10: HMI Panel Application Crash due to Content-Length HTTP Header

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

23© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Many HMI applications allow the user to upload, download, or save a project as a ZIP file,
with further exporting to a server or another device. However, if ZIP archives are not handled
correctly, applications could become vulnerable to several attacks, such as ZIP bombing or,
more dangerously, directory traversal. A typical ZIP file structure is depicted in Figure 11.

Local Header

Local Header

Local Header

file #

file #

file #

Central Directory

End of Central Directory

Extra data in Local Header

Extra data in Local Header

Extra data in Local Header

Figure 11: Typical ZIP File

Each Local Header field contains information about a compressed file (e.g., size, date of
creation, and crucially, the filename). When unzipping occurs, the filename provided in the
Local Header is combined with the path where the archive will be unzipped. If the process is
not implemented correctly, it creates a dangerous opportunity for possible directory traversal.
For example, if name in Local Header field is “../data.png”, then the final path could be /data/
data/app.name/database/../data.png, which resolves to /data/data/app.name/data.png.
Thus, if an attacker could subvert the archive, he could rewrite any arbitrary file that is write
accessible for the application.

A proof-of-concept attack was conducted using evilarc. We chose a mobile HMI panel
that would download a zipped project from a remote web server without enforcing server
authentication. Hence, the attacker can MiTM the client-server connection, and the mobile
application may download a malicious ZIP archive designed to exploit path traversal. A
malicious archive could be created as follows:

https://github.com/ptoomey3/evilarc

24 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Figure 12: Using evilarc to Create a Malicious ZIP File

After downloading and unpacking the project, the user would not notice any malfunction;
however, the background image of another HMI project has been changed by the attacker.

Figure 13: Proof-of-concept Attack on Victim HMI Panel View

Another problem that appeared in several client implementations was the incorrect use of
Web Components. One of the analyzed applications was based on Apache Cordova and
allowed JavaScript code to access several Android features. This application also loaded
multiple HTML templates and CSS stylesheets from a remote server, using cleartext HTTP
connections. As such, an attacker in a MiTM position could inject malicious JavaScript code in
the application that will be able to execute with certain privileges and access to some device
features (e.g., Bluetooth).

25© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Figure 14: Client-side injection in HMI Panel Using Cordova

More than a third of the analyzed applications had one or more problems with client code
(lack of) quality.

M8: Code Tampering
This category covers binary patching, local resource modification, method hooking, method
swizzling, and dynamic memory modification.

Almost all of the analyzed applications (94%) did not implement code anti-tampering
protections. Therefore, we only focused on reviewing the most basic anti-tampering protection
found in mobile applications: rooted device detection. Rooted Android devices are relatively
common, and they allow the user to perform actions such as installing custom firmware,
removing system applications, or disabling system components. A drawback of rooting is that,
for some devices, any regular application has the privileges to perform any of these actions as
well, without user interaction. For instance, any installed application would be able to access
the private folders of another sensitive application. We observed that running on a rooted
device eases the exploitability of certain application vulnerabilities.

We acknowledge that any root detection mechanism implemented by a non-privileged
application can fundamentally be evaded by a root-privileged malicious application;
nevertheless, as with obfuscation, implementation of simple root detection mechanisms may
raise the bar for an attacker or a malicious application.

Rooted-device detection can be done in many ways: for example, by checking for the presence
of specific applications used to root devices, trying to access protected folders, checking the
system settings, or attempting to set a new system property and read it back.

Best practice recommends that, at a minimum, the application implement several simple
detection methods and show a pop-up warning if it detects it is running on a rooted device. Of
the 34 applications we analyzed, only two implemented a basic root detection mechanism.

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

26 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

M9: Reverse Engineering
This category includes analysis of the final core binary to determine its source code, libraries,
algorithms, and other assets.

We began by testing whether code obfuscation is in place. Code obfuscation could prevent
an attacker from understanding program algorithms, discovering intellectual property, or
extracting sensitive data. Also, bug exploitation by application patching can be made more
complex, because it is harder for an attacker to determine the actual code blocks that need
to be patched. Several obfuscation tools are available that integrate with development
environments. A basic, yet effective, obfuscation approach consists of renaming all variables
and functions, so that much of their semantic purpose is lost. As an example, the snippet
below presents obfuscated code obtained by a Java decompiler:

Figure 15: Obfuscated Java Code

In the following example is non-obfuscated code obtained by a Java decompiler:

Figure 16: Non-obfuscated Code

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

27© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

In general, non-obfuscated code is easier to understand, and it shows that even a simple
approach of variable and function renaming could be an effective obfuscation technique.

However, less than half (47%) of the surveyed applications were implementing such techniques.

M10: Extraneous Functionality
Often, developers include hidden backdoor functionality or other internal development security
controls that are not intended to be released into a production environment.

The main issue we identified in this category was related to application permissions. We
found that a quarter (24%) of the applications appeared to be over-privileged and required
permissions that were not used or did not seem to be related to the functionalities advertised
by the applications.

Imagine two possible scenarios:
1. An application is compromised, and attackers can execute custom code from its process:

extra permissions will give them an increased ability to pivot the attack
2. An application vendor is hacked or maliciously decides to include malware in the next

application release: in this case, malicious code will be able to leverage extra permissions
for harmful purposes

Those applications violated the principle of least privileges. In the following, we list
permissions that could not be mapped to advertised or required application functionalities:

• android.permission.BLUETOOTH_ADMIN
• android.permission.GET_ACCOUNTS
• android.permission.USE_CREDENTIALS
• android.permission.MODIFY_AUDIO_SETTINGS
• android.permission.RECORD_AUDIO
• android.permission.ACCESS_COARSE_LOCATION
• android.permission.READ_LOG
• android.permission.RECEIVE_BOOT_COMPLETED
• android.permission.C2D_MESSAGE

One may argue that some applications (e.g., HMI panels) may need some of these permissions;
for example, a local application may want to use coarse location to detect whether it is running
inside the safe perimeter. However, using static and dynamic reverse engineering, we were not
able to identify such additional functionalities. For example, we found a local HMI interface that
has permission to record audio, but does not appear to have any audio-related functions, and a
remote SCADA client that requires access to the user’s location.

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

28 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Backend Issues
While backend issues were not our main research target, we have included the vulnerabilities
we identified while reviewing other application parts. The vulnerabilities we discovered involve
remote backends and local servers, and include DoS, memory corruptions, SQL injections, and
information leakage.

To our surprise, the most frequent backend vulnerability was SQL injection. Most of the
reviewed SCADA backend applications that expose cloud endpoints are complex, modern
web applications, sometimes storing data into databases. We observed that in many cases
SQL input was not validated on the server-side; hence an attacker could trigger injections by
maliciously using control symbols (e.g., quotes or comments) in the input parameters. See
Figure 17 for a proof-of-concept affecting one of the surveyed applications. Additionally, one of
the reviewed applications had write permissions for the tables, allowing an attacker to tamper
with station configurations and user statistics.

Figure 17: Example SQL Injection

Another common problem that mostly affected local applications (that is, those assumed to
be running in the safe perimeter) was remote arbitrary file reading. Figure 18 shows a proof-
of-concept where the server-side of an HMI mobile application allows arbitrary file reading.
The problem lays in the incorrect processing of the supplied project path variable. An attacker,
using path traversal, could read arbitrary files from the server. In one case, the local backend
application was running with the privileged NT SYSTEM user by default, hence, the attacker
could read sensitive systems files (e.g., SAM databases).

29© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Figure 18: Arbitrary Remote File Read

The rest of the discovered backend issues are related to cross-site scripting (XSS), same-origin
hijacking, and other web-related vulnerabilities. We also found DoS issues.

30 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Remediation And Best Practices
In addition to the well-known recommendations covering the OWASP Top 10 and OWASP
Mobile Top 10 2016 risks, there are several actions that could be taken by developers of mobile
SCADA clients to further protect their applications and systems.

In the following list, we gathered the most important items to consider when developing a
mobile SCADA application:

• Always keep in mind that your application is a gateway to your ICS systems. This should
influence all of your design decisions, including how you handle the inputs you will accept
from the application and, more generally, anything that you will accept and send to your ICS
system.

• Avoid all situations that could leave the SCADA operators in the dark or provide them with
misleading information, from silent application crashes to full subverting of HMI projects.

• Follow best practices. Consider covering the OWASP Top 10, OWASP Mobile Top 10 2016,
and the 24 Deadly Sins of Software Security.

• Do not forget to implement unit and functional tests for your application and the backend
servers, to cover at a minimum the basic security features, such as authentication and
authorization requirements.

• Enforce password/PIN validation to protect against threats U1-3. In addition, avoid storing
any credentials on the device using unsafe mechanisms (such as in cleartext) and leverage
robust and safe storing mechanisms already provided by the Android platform.

• Do not store any sensitive data on SD cards or similar partitions without ACLs at all costs
Such storage mediums cannot protect your sensitive data.

• Provide secrecy and integrity for all HMI project data. This can be achieved by using
authenticated encryption and storing the encryption credentials in the secure Android
storage, or by deriving the key securely, via a key derivation function (KDF), from the
application password.

• Encrypt all communication using strong protocols, such as TLS 1.2 with elliptic curves key
exchange and signatures and AEAD encryption schemes. Follow best practices, and keep
updating your application as best practices evolve. Attacks always get better, and so should
your application.

• Catch and handle exceptions carefully. If an error cannot be recovered, ensure the
application notifies the user and quits gracefully. When logging exceptions, ensure no
sensitive information is leaked to log files.

• If you are using Web Components in the application, think about preventing client-side
injections (e.g., encrypt all communications, validate user input, etc.).

• Limit the permissions your application requires to the strict minimum.
• Implement obfuscation and anti-tampering protections in your application.

31© 2017 EMBEDI, IOActive, Inc. All Rights Reserved

Conclusions
Two years have passed since our previous research, and things have continued to evolve.
Unfortunately, they have not evolved with robust security in mind, and the landscape is less
secure than ever before. In 2015 we found a total of 50 issues in the 20 applications we
analyzed and in 2017 we found a staggering 147 issues in the 34 applications we selected.
This represents an average increase of 1.6 vulnerabilities per application.

We therefore conclude that the growth of IoT in the era of “everything is connected” has not
led to improved security for mobile SCADA applications. According to our results, more than
20% of the discovered issues allow attackers to directly misinform operators and/or directly/
indirectly influence the industrial process.

In 2015, we wrote:

SCADA and ICS come to the mobile world recently, but bring old approaches and
weaknesses. Hopefully, due to the rapidly developing nature of mobile software, all these
problems will soon be gone.

We now concede that we were too optimistic and acknowledge that our previous statement
was wrong.

Over the past few years, the number of incidents in SCADA systems has increased and
the systems become more interesting for attackers every year. Furthermore, widespread
implementation of the IoT/IIoT connects more and more mobile devices to ICS networks.
Thus, the industry should start to pay attention to the security posture of its SCADA mobile
applications, before it is too late.

Acknowledgments
Many thanks to Dmitriy Evdokimov, Gabriel Gonzalez, Pau Oliva, Alfredo Pironti,
Ruben Santamarta, and Tao Sauvage for their help during our work on this research.

32 © 2017 EMBEDI, IOActive, Inc. All Rights Reserved

About Us
Alexander Bolshev
Alexander Bolshev is a Security Consultant for IOActive. He holds a Ph.D. in computer security
and works as an assistant professor at Saint-Petersburg State Electrotechnical University.
His research interests lie in distributed systems, as well as mobile, hardware, and industrial
protocol security. He is the author of several white papers on topics of heuristic intrusion
detection methods, Server Side Request Forgery attacks, OLAP systems, and ICS security. He
is a frequent presenter at security conferences around the world, including Black Hat USA/EU/
UK, ZeroNights, t2.fi, CONFIdence, and S4.

Ivan Yushkevich
Ivan is the information security auditor at Embedi (http://embedi.com). His main area of
interest is source code analysis for applications ranging from simple websites to enterprise
software. He has vast experience in banking systems and web application penetration testing.

IOActive
IOActive is a comprehensive, high-end information security services firm with a long and
established pedigree in delivering elite security services to its customers. Our world-renowned
consulting and research teams deliver a portfolio of specialist security services ranging from
penetration testing and application code assessment through to semiconductor reverse
engineering. Global 500 companies across every industry continue to trust IOActive with their
most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in
Seattle, USA, with global operations through the Americas, EMEA and Asia Pac regions. Visit
for more information. Read the IOActive Labs Research Blog. Follow IOActive on Twitter.

Embedi
Embedi expertise is backed up by extensive experience in security of embedded devices,
with special emphasis on attack and exploit prevention. Years of research are the genesis
of the software solutions created. Embedi developed a wide range of security products for
various types of embedded/smart devices used in different fields of life and industry such as:
wearables, smart home, retail environments, automotive, smart buildings, ICS, smart cities,
and others. Embedi is headquartered in Berkeley, USA. Visit for more information and follow
Embedi on Twitter.

https://ioactive.com/
http://blog.ioactive.com
http://twitter.com/ioactive
http://www.emebedi.com
https://twitter.com/_embedi_

