
TECHNICAL WHITE PAPER

Copyright ©2014. All Rights Reserved

ELF Parsing Bugs by Example

with Melkor Fuzzer

Alejandro Hernández

(@nitr0usmx)

IOActive Senior Security Consultant

Abstract

Too often the development community continues to blindly trust the metadata in

Executable and Linking Format (ELF) files. In this paper, Alejandro Hernández

walks you through the testing process for seven applications and reveals the bugs

that he found. He performed the tests using Melkor, a file format fuzzer he wrote

specifically for ELF files.

https://twitter.com/nitr0usmx

Copyright ©2014, IOActive Inc. [2]

Contents

Introduction .. 3

1. - Melkor Test of HT Editor 2.1.0 ... 5

Test Case Generation ... 5

Fuzzing the Parser .. 5

The Bug ... 6

2. - Melkor Test of GCC (GNU Compiler) 4.8.1 .. 7

Test Case Generation ... 7

Fuzzing the Parser .. 7

The Bug ... 8

3. - Melkor Test of the Snowman Decompiler v0.0.5 .. 9

Test Case Generation ... 9

Fuzzing the Parser .. 9

The Bug ... 10

4. - Melkor Test of GDB (GNU Debugger) 7.8 .. 10

Test Case Generation ... 10

Fuzzing the Parser .. 11

The Bug ... 11

5. - Melkor Test of IDA Pro (Demo) 6.6.140625 ... 12

Test Case Generation ... 12

Fuzzing the Parser .. 12

The Bug ... 12

6. - Melkor Test of OpenBSD ldconfig .. 13

Test Case Generation ... 13

Fuzzing the Parser .. 13

The Bug ... 13

7. - Melkor Test of OpenBSD 5.5 Kernel .. 14

Test Case Generation ... 14

Fuzzing the Parser .. 14

The Bug ... 14

Conclusion ... 15

Acknowledgements .. 16

References .. 16

Copyright ©2014, IOActive Inc. [3]

Introduction

The ELF file format, like any other file format, is an array of bits and bytes interconnected

through data structures. When interpreted by an ELF parser, an ELF file makes sense,

depending upon the parsing context: runtime (execution view) or static (linking view).

In 1999, ELF was chosen as the standard binary file format for *NIX systems, and now,

about 15 years later, we are still in many instances blindly trusting the (meta)data within

ELF files, either as executable binaries, shared libraries, or relocation objects.

However, blind trust is not necessary. Fuzzing tools are available to run proper safety

checks for every single untrusted field.

To demonstrate, I tested and found bugs in seven applications using Melkor, a file format

fuzzer specifically for ELF files that I developed:

https://github.com/IOActive/Melkor_ELF_Fuzzer.

The following were tested:

 HT Editor 2.1.0

 GCC (GNU Compiler) 4.8.1

 Snowman Decompiler v0.0.5

 GDB (GNU Debugger) 7.8

 IDA Pro (Demo version) 6.6.140625

 OpenBSD 5.5 ldconfig

 OpenBSD 5.5 Kernel

Most, if not all, of these bugs were reported to the vendors or developers.

Almost all, if not all, were only crashes (invalid memory dereferences) and I did not

validate whether they’re exploitable security bugs. Therefore, please do not expect a

working command execution exploit at the end of this white paper.

Melkor is an intuitive and, therefore, easy-to-use fuzzer. To get started, you simply

identify:

 The kind of metadata you want to fuzz

 A valid ELF file to use as a template

 The number of desired test cases you want to generate (malformed ELF files that I
call ‘orcs,’ as shown in my Black Hat Arsenal presentation, slides 51 and 52.1

 The likelihood of each fuzzing rule as a percentage

https://github.com/IOActive/Melkor_ELF_Fuzzer

Copyright ©2014, IOActive Inc. [4]

Options supported by Melkor:

For a quiet output, use the -q switch.

Copyright ©2014, IOActive Inc. [5]

1. - Melkor Test of HT Editor 2.1.0

HT (http://hte.sourceforge.net) is my favorite ELF editor. It has parsers for all internal

metadata.

Test Case Generation

To start, we’ll fuzz only the ELF header, with a 20% chance of executing each fuzzing

rule, to create 1000 test cases:

$./melkor -H templates/foo -l 20 -n 1000

You will find the test cases that are generated in the orcs_foo directory along with a

detailed report explaining what was fuzzed internally.

Fuzzing the Parser

You could perform manually testing by supplying each orc (test case) as a parameter to

the HT Editor. However, it would take a long time to test 1000 test cases.

For that reason, Melkor comes with two testing scripts:

 For Linux, test_fuzzed.sh

 For Windows systems, win_test_fuzzed.bat

To test the scripts automatically, enter:

$./test_fuzzed.sh orcs_foo/ “ht”

http://hte.sourceforge.net/

Copyright ©2014, IOActive Inc. [6]

Every time HT Editor opens a valid ELF file, you must press the [F10] key to continue to

the next test case.

The Bug

After 22 tries, the test case orc_0023 crashed the HT Editor:

The next step is to identify the cause of the crash by reading the detailed report

generated by Melkor:

By debugging it with GDB, you would see:

Effectively, there is a NULL pointer dereference in the instruction mov (%rdi),%rax.

Copyright ©2014, IOActive Inc. [7]

2. - Melkor Test of GCC (GNU Compiler) 4.8.1

I consider the GCC to be the compiler of excellence.

When you type gcc foo.c -o foo, you’re performing all the phases (compilation,

linking, etc.); however, if you want only to compile, the -c is necessary, as in gcc -c

foo.c, to create the ELF relocatable object foo.o.

Normally, relocations and/or symbols tables are an important part of the .o objects. This is

what we are going to fuzz.

Test Case Generation

Inside the templates/ folder, a foo.o file is compiled with the same Makefile to create

Melkor, which in turn will be used as a template to create 5000 (default -n option)

malformed relocatable files. We instruct Melkor to fuzz the relocations within the file (-R)

and the symbol tables (-s) as well:

$./melkor -Rs templates/foo.o

During the fuzzing process, you may see verbose output:

Fuzzing the Parser

In order to test GCC with every malformed .o object, a command like gcc -o output

malformed.o must be executed. To do so automatically, the following arguments are

supplied to the testing script:

$./test_fuzzed.sh orcs_foo.o/ “gcc –o output”

Copyright ©2014, IOActive Inc. [8]

You can observe how mature GCC is and how it properly handles every malformed struct,

field, size, etc.:

The Bug

Normally, in a Linux system, when a program fails due to memory corruption or an invalid

memory dereference, it writes to STDERR the message: “Segmentation fault.” As a quick

way to identify if we found bugs in the linker, we can simply look for that message in the

output of the testing script (the script already redirected the STDERR of each test case to

STDOUT).

$./test_fuzzed.sh orcs_foo.o/ “gcc –o output” | egrep "Testing

program|Segmentation fault"

Filtering for only those that ended with a “Segmentation fault,” I saw that 197 of 5000 test

cases triggered a bug.

Copyright ©2014, IOActive Inc. [9]

3. - Melkor Test of the Snowman Decompiler v0.0.5

Snowman (http://derevenets.com) is a great native code to C/C++ decompiler for

Windows. It’s free and supports PE and ELF formats in x86 and x86-64 architectures.

Test Case Generation

In the previous example, I could have mentioned that after a period of testing, I noticed

that some applications properly validated all fields in the initial header and handled the

errors. So, in order to fuzz more internal levels, I implemented the following metadata

dependencies in Melkor, which shouldn’t be broken:

With these dependencies, it’s possible to corrupt deeper metadata without corrupting

structures in higher levels. In the previous GCC example, it’s evident that these

dependencies were in place transparently to reach the third and fourth levels of metadata,

symbol tables, and relocation tables respectively. For more about dependencies in

Melkor, see Melkor Documentation: ELF Metadata Dependencies2.

Continuing with Snowman, I created only 200 test cases with fuzzed sections in the

Section Header Table (SHT), without touching the ELF header, using the default

likelihood of fuzzing rules execution, which is 10%:

$./melkor -S templates/foo -n 200

Fuzzing the Parser

Since snowman.exe runs on Windows machines, I then copied the created test cases to

the Windows box where Snowman was loaded and tested each case using

win_test_fuzzed.bat as follows:

C:\Users\nitr0us\Downloads>melkor-v1.0\win_test_fuzzed.bat

orcs_foo_SHT_snowman\ snowman-v0.0.5-win-x64\snowman.exe

http://derevenets.com/

Copyright ©2014, IOActive Inc. [10]

For every opened snowman.exe for which there is no exception, it’s necessary to close

the window with the [Alt] + [F4] keyboard combination. Sorry for the inconvenience but I

kept the testing scripts as simple as possible.

The Bug

I was lucky on testing day. The second orc triggered an unhandled exception that made

Snowman fail:

4. - Melkor Test of GDB (GNU Debugger) 7.8

GDB, the most used debugger in *NIX systems, is another great piece of code.

When you type gdb foo, the necessary ELF data structures and other metadata is

parsed and prepared before the debugging process; however, when you execute a

program within GDB, some other metadata is parsed.

Test Case Generation

Most applications rely on the SHT to reach more internal metadata; the data and the code

itself, etc. As you likely noticed in the previous example and as you’ll see now with GDB,

malformed SHTs might crash many applications. So, I created 2000 orcs with fuzzed

SHTs:

$./melkor -S templates/foo -n 2000

Copyright ©2014, IOActive Inc. [11]

Fuzzing the Parser

If GDB doesn’t find anything wrong with the ELF to be debugged, it will leave you at the

well-known (gdb) prompt waiting for your input. You must type quit in order to return to

the OS shell. Hence, to automate the testing with our script, it’s necessary to comment

line 79 and uncomment line 80, as shown:

$2 1file 2>&1

echo quit | $2 1file 2>&1 # Example: "echo quit | gdb -q orcs/x"

That will automatically feed GDB with “quit” and continue to the other files.

Once updated, it’s time to fuzz it:

$./test_fuzzed.sh orcs_foo/ "gdb -q"

As in GCC, you’ll see that GDB and BFD handle many errors:

The Bug

While none of the 2000 orcs raised a segmentation fault, I manually tested some of the

orcs and found that many were unable to be debugged due to “memory exhaustion”:

Copyright ©2014, IOActive Inc. [12]

5. - Melkor Test of IDA Pro (Demo) 6.6.140625

IDA Pro is the beautifully visual debugger that runs in different OSs and supports the ELF

file format.

I used the demonstration version, downloadable from the official web site:

https://www.hex-rays.com/products/ida/support/download_demo.shtml.

Test Case Generation

IDA Pro validates most ELF header fields to identify whether it is possible to analyze the

binary and, if not, it bypasses those validations. Only the SHT of each test case was

fuzzed:

$./melkor -S templates/foo -n 500

Fuzzing the Parser

Because it was tested in a Windows environment, the win_fuzz_tested.bat was used:

C:\Users\nitr0us\Downloads>melkor-v1.0\win_test_fuzzed.bat

orcs_foo_SHT_ida\ "C:\Program Files (x86)\IDA Demo 6.6\idaq.exe"

For every opened idaq.exe for which there is no exception, it’s necessary to close the

window with the [Alt] + [F4] keyboard combination.

The Bug

I found a few IDA Pro bugs. In some cases, the orcs raise “Unhandled C++ Errors” and in

others, the application just hung and created large id1 files (about 7 GB each):

https://waynetech.ioactive.com/owa/redir.aspx?C=symmI-FgGEi6A3W2I_-a_p4Lz6gKx9FI3i_4mrfsfyTN8rnCxjYq4UmVLeEmNV6pFyhYCCqiz4w.&URL=https%3a%2f%2fwww.hex-rays.com%2fproducts%2fida%2fsupport%2fdownload_demo.shtml

Copyright ©2014, IOActive Inc. [13]

6. - Melkor Test of OpenBSD ldconfig

OpenBSD, a favorite OS of mine, has a utility called ldconfig, which I tested. (Go to $man

ldconfig for more information.)

Test Case Generation

Some test cases were created by corrupting the Program Header Table (PHT), SHT, and

notes section.

$./melkor –PSN obsd_5.2 –n 2000

Fuzzing the Parser

In this case, you do not need to use test_fuzzed.sh because to run ldconfig -P you

need only to pass the name of the directory where the libraries are located:

#ldconfig –Pv orcs_obsd_5.2/

The Bug

Most of the bugs are invalid pointer dereferences in libexec/ld.so/ldconfig/prebind.c. They

occur when elf_check_note() is called, if the current p_type is PT_NOTE (note

information).

Inside this function, ldconfig tries to access the content of a pointer plus the p_offset

element of the current program header. If p_offset holds a large value, it will fail:

/*

 * check if the given executable header on an ELF executable

 * has the proper OpenBSD note on the file if it is not present

 * binaries will be skipped.

 */

int

elf_check_note(void *buf, Elf_Phdr *phdr)

Copyright ©2014, IOActive Inc. [14]

{

 u_long address;

 u_int *pint;

 char *osname;

 address = phdr->p_offset;

 pint = (u_int *)((char *)buf + address);

 osname = (char *)buf + address + sizeof(*pint) * 3;

 if (pint[0] == 8 /* OpenBSD\0 */ &&

 pint[1] == 4 /* ??? */ &&

 pint[2] == 1 /* type_osversion */ &&

 strcmp("OpenBSD", osname) == 0)

 return 1;

 return 0;

}

7. - Melkor Test of OpenBSD 5.5 Kernel

OpenBSD 5.5 Kernel is the great masterpiece we all know.

Test Case Generation

To test an operating system’s ELF loader, you could corrupt the PHT of an executable

and then try to execute it:

$./melkor –P obsd_5.5 –n 3000

Fuzzing the Parser

Note that a second parameter in test_fuzzed.sh, which is the application to test, is not

used because every file within the supplied directory will be directly executed:

$./test_fuzzed.sh orcs_obsd_5.5/

The Bug

Fuzzing the parser produced a local kernel panic. I’ve written about that in a separate

advisory3 which includes a proof of concept code as well.

This bug demonstrates why fuzzing, in addition to manual testing, is important; a very

specific circumstance triggered the kernel panic.

Copyright ©2014, IOActive Inc. [15]

Conclusion

Clearly, we would be in error if we assumed that ELF files, due to the age of the format,

are free from parsing mistakes; common parsing mistakes are still found.

It would also be a mistake to assume that parsers are just in the OS kernels, readelf or

objdump. Many new programs support 32 and 64-bit ELF files, and antivirus engines,

debuggers, OS kernels, reverse engineering tools, and even malware may contain ELF

parsers.

I hope you have seen from these examples that fuzzing is a very helpful method to

identify functional (and security) bugs in your parsers in an automated fashion. An

attacker could convert a single crash into an exploitable security bug in certain

circumstances or those small crashes could be employed as anti-reversing or anti-

infection techniques.

Feel free to fuzz, crash, fix, and/or report the bugs you find to make better software.

Happy fuzzing.

Alejandro Hernández

Copyright ©2014, IOActive Inc. [16]

Acknowledgements

1. IOActive, Inc.

References

[1] Alejandro Hernández. “In the lands of corrupted elves: Breaking ELF software with

Melkor fuzzer.” <https://www.blackhat.com/docs/us-14/materials/arsenal/us-14-

Hernandez-Melkor-Slides.pdf>

[2] Melkor Documentation: ELF Metadata Dependencies and Fuzzing Rules.

<https://github.com/IOActive/Melkor_ELF_Fuzzer/tree/master/docs>

[3] IOActive Security Advisory: OpenBSD  5.5 Local Kernel Panic.

<http://www.ioactive.com/pdfs/IOActive_Advisory_OpenBSD_5_5_Local_Kernel_Panic.p

df>

About the Writer

Alejandro Hernández is a senior security consultant at IOActive, Inc., who has more than 10 years of experience in

the security space. He provides security services to Fortune 500 companies and other organizations around the

world. In addition to authoring Melkor, he co-authored DotDotPwn, a directory traversal fuzzer. He holds technical

certifications and is a speaker at security conferences in South America and the United States. Follow Alejandro on

Twitter: @nitr0usmx.

About IOActive

IOActive is a comprehensive, high-end information security services firm with a long and established pedigree in

delivering elite security services to its customers. Our world-renowned consulting and research teams deliver a

portfolio of specialist security services ranging from penetration testing and application code assessment through to

semiconductor reverse engineering. Global 500 companies across every industry continue to trust IOActive with

their most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in Seattle, USA, with

global operations through the Americas, EMEA and Asia Pac regions. Visit www.ioactive.com for more information.

Read the IOActive Labs Research Blog: http://blog.ioactive.com/. Follow IOActive on Twitter:

http://twitter.com/ioactive.

https://www.blackhat.com/docs/us-14/materials/arsenal/us-14-Hernandez-Melkor-Slides.pdf
https://www.blackhat.com/docs/us-14/materials/arsenal/us-14-Hernandez-Melkor-Slides.pdf
https://github.com/IOActive/Melkor_ELF_Fuzzer/tree/master/docs
http://www.ioactive.com/pdfs/IOActive_Advisory_OpenBSD_5_5_Local_Kernel_Panic.pdf
http://www.ioactive.com/pdfs/IOActive_Advisory_OpenBSD_5_5_Local_Kernel_Panic.pdf
https://twitter.com/nitr0usmx
http://www.ioactive.com/
http://blog.ioactive.com/
http://twitter.com/ioactive

